نتایج جستجو برای: third order shear deformation theory
تعداد نتایج: 1890389 فیلتر نتایج به سال:
The novelty of this study is presentation of an exact solution for prediction of postbuckling behavior of shear deformable micro- and nano-scale beams based on modified couple stress theory and using principle of minimum potential energy. Timoshenko and Reddy-Levinson beam theories are applied to consider the shear deformation effect and Von Karman nonlinear kinematics is used to describe the n...
Analysis of Bending and Buckling of Circular Porous Plate Using First-Order Shear Deformation Theory
Porous materials are lightweight, flexible and resistant to hairline cracks, so today with the development of technology porous structure produced for use in various industries. This structure widely use in beams, plates and shells. The purpose of this paper is to investigate the effect of porosity in axial symmetry in bending and buckling load sheet for analysis. For this purpose, a circular p...
Using a combination of explicit solvent atomistic simulation and continuum theory, here we study the lateral deformation mechanics of three distinct protein structures: an amyloid fibril, a beta helix, and an alpha helix. We find that the two β-sheet rich structures - amyloid fibril and beta helix, with persistence lengths on the order of μm - are well described by continuum mechanical theory, ...
Thermoelastic behavior of temperature-dependent (TD) and independent (TID) functionally graded variable thickness cantilever beam subjected to mechanical and thermal loadings is studied based on shear deformation theory using a semi-analytical method. Loading is composed of a transverse distributed force, a longitudinal distributed temperature field due to steady-state heat conduction from root...
In this article, the thermo-elastic behavior of a functionally graded simple blade subjected to the mechanical and thermal loadings is presented, applying a semi-analytical method and a variable thickness cantilever beam model. A specific temperature gradient is employed between the root and the edges of the beam. It is assumed that the mechanical and thermal properties are longitudinal directi...
In this paper the vibration of a spinning cylindrical shell made of functional graded material is investigated. After a brief introduction of FG materials, by employing higher order theory for shell deformation, constitutive relationships are derived. Next, governing differential equation of spinning cylindrical shell is obtained through utilizing energy method and Hamilton’s principle. Making ...
Based on the third-order shear deformation theory (TSDT), this paper numerically investigates the natural frequencies and time response of three-layered annular plate with functionally graded materials (FGMs) sheet core and piezoelectric face sheets, under initial external electric voltage. The impressive material specifications of FGM core are assumed to vary continuously across the plate thic...
In this article, a new higher order shear deformation theory based on trigonometric shear deformation theory is developed. In order to consider the size effects, the nonlocal elasticity theory is used. An analytical method is adopted to solve the governing equations for static analysis of simply supported nanoplates. In the present theory, the transverse shear stresses satisfy the traction free...
Stability of functionally graded beams with piezoelectric layers subjected to axial compressive load that is simply supported at both ends is studied in this paper. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical par...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید