نتایج جستجو برای: symmetric digraphs
تعداد نتایج: 85672 فیلتر نتایج به سال:
As a common generalization of matchings and matroid intersection, W.H. Cunningham and J.F. Geelen introduced the notion of path-matchings, then they introduced the more general notion of even factor in weakly symmetric digraphs. Here we give a min-max formula for the maximum cardinality of an even factor. Our proof is purely combinatorial. We also provide a Gallai-Edmonds-type structure theorem...
Given an Eulerian digraph, we consider the genus distribution of its face-oriented embeddings. We prove that such is log-concave for two families digraphs, thus giving a positive answer these to question asked in Bonnington, Conder, Morton and McKenna (2002). Our proof uses real-rooted polynomials representation theory symmetric group $\mathbb{S}_n$. The result also extended some factorizations...
In this paper the properties of node-node adjacency matrix in acyclic digraphs are considered. It is shown that topological ordering and node-node adjacency matrix are closely related. In fact, first the one to one correspondence between upper triangularity of node-node adjacency matrix and existence of directed cycles in digraphs is proved and then with this correspondence other properties of ...
Generalized connectivity introduced by Hager (1985) has been studied extensively in undirected graphs and become an established area in undirected graph theory. For connectivity problems, directed graphs can be considered as generalizations of undirected graphs. In this paper, we introduce a natural extension of generalized k-connectivity of undirected graphs to directed graphs (we call it stro...
A jump system, which is a set of integer lattice points with an exchange property, is an extended concept of a matroid. Some combinatorial structures such as the degree sequences of the matchings in an undirected graph are known to form a jump system. On the other hand, the maximum even factor problem is a generalization of the maximum matching problem into digraphs. When the given digraph has ...
In this paper, we investigate isomorphic factorizations of the Kronecker product graphs. Using these relations, it is shown that (1) the Kronecker product of the d-out-regular digraph and the complete symmetric digraph is factorized into the line digraph, (2) the Kronecker product of the Kautz digraph and the de Bruijn digraph is factorized into the Kautz digraph, (3) the Kronecker product of b...
Reingold has shown that L = SL, that s-t connectivity in a poly-mixing digraph is complete for promise-RL, and that s-t connectivity for a poly-mixing out-regular digraph with known stationary distribution is in L. Several properties that bound the mixing times of random walks on digraphs have been identified, including the digraph conductance and the digraph spectral expansion. However, rapidl...
A vertex-deleted unlabeled subdigraph of a digraph D is a card of D. A dacard specifies the degree triple (a, b, c) of the deleted vertex along with the card, where a and b are respectively the indegree and outdegree of v and c is the number of symmetric pairs of arcs (each pair considered as unordered edge) incident with v. The degree (triple) associated reconstruction number, drn(D), of a dig...
We study the complexity of deciding whether a given digraph D has a vertex-partition into two disjoint subdigraphs with given structural properties. Let H and E denote following two sets of natural properties of digraphs: H ={acyclic, complete, arcless, oriented (no 2-cycle), semicomplete, symmetric, tournament} and E ={strongly connected, connected, minimum outdegree at least 1, minimum in-deg...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید