نتایج جستجو برای: strongly jordan zero product preserving map

تعداد نتایج: 868389  

2017
Runling An Jinchuan Hou RUNLING AN JINCHUAN HOU

Let T be a triangular ring. An additive map δ from T into itself is said to be Jordan derivable at an element Z ∈ T if δ(A)B +Aδ(B) + δ(B)A+Bδ(A) = δ(AB+BA) for any A,B ∈ T with AB + BA = Z. An element Z ∈ T is called a Jordan all-derivable point of T if every additive map Jordan derivable at Z is a Jordan derivation. In this paper, we show that some idempotents in T are Jordan all-derivable po...

2007
Ali Taheri

Let Ω ⊂ R be a bounded Lipschitz domain and consider the Dirichlet energy functional F[u,Ω] := 1 2 Z

Journal: :bulletin of the iranian mathematical society 2015
a. a. ‎estaji a. ‎karimi feizabadi m. abedi

in this paper a particular case of z-ideals, called strongly z-ideal, is defined by introducing zero sets in pointfree topology. we study strongly z-ideals, their relation with z-ideals and the role of spatiality in this relation. for strongly z-ideals, we analyze prime ideals using the concept of zero sets. moreover, it is proven that the intersection of all zero sets of a prime ideal of c(l),...

2012
Jianyu Chen JIANYU CHEN

We show that there exists a C∞ volume preserving diffeomorphism P of a compact smooth Riemannian manifold M of dimension 4, which is close to the identity map and has nonzero Lyapunov exponents on an open and dense subset G of not full measure and has zero Lyapunov exponent on the complement of G. Moreover, P |G has countably many disjoint open ergodic components.

Journal: :Journal of Mathematical Analysis and Applications 2002

Journal: :Filomat 2021

Here, we investigate symmetric bi-derivations and their generalizations on L? 0 (G)*. For k ? N, show that if B:L?0(G)*x L?0(G)* is asymmetric bi-derivation such [B(m,m),mk] Z(L?0(G)*) for all m (G)*, then B the zero map. Furthermore, characterize generalized biderivations group algebras. We also prove any Jordan 0(G)* a bi-derivation.

2008
Krzysztof Fra̧czek

We consider area–preserving diffeomorphisms on tori with zero entropy. We classify ergodic area–preserving diffeomorphisms of the 3–torus for which the sequence {Df}n∈N has polynomial growth. Roughly speaking, the main theorem says that every ergodic area–preserving C2–diffeomorphism with polynomial uniform growth of the derivative is C2–conjugate to a 2–steps skew product of the form T ∋ (x1, ...

2008
Melanie Matchett Wood Philip Matchett Wood

We show that any finite system S in a characteristic zero integral domain can be mapped to Z/pZ, for infinitely many primes p, preserving all algebraic incidences in S. This can be seen as a generalization of the well-known Freiman isomorphism lemma, which asserts that any finite subset of a torsion-free group can be mapped into Z/pZ, preserving all linear incidences. As applications, we derive...

Journal: :Journal of Mathematical Analysis and Applications 2015

2008
MICHAEL C. MACKEY MARTA TYRAN - KAMIŃSKA

Using the Perron-Frobenius operator we establish a new functional central limit theorem result for non-invertible measure preserving maps that are not necessarily ergodic. We apply the result to asymptotically periodic transformations and give an extensive specific example using the tent map.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید