نتایج جستجو برای: sectional curvature
تعداد نتایج: 236077 فیلتر نتایج به سال:
One of the most fundamental problems in submanifold theory is to establish simple relationships between intrinsic and extrinsic invariants of the submanifolds (cf. [6]). A general optimal inequality for submanifolds in Riemannian manifolds of constant sectional curvature was obtained in an earlier article [5]. In this article we extend this inequality to a general optimal inequality for arbitra...
We show that a noncompact manifold with bounded sectional curvature, whose ends are sufficiently collapsed, has a finite dimensional space of square-integrable harmonic forms. In the special case of a finite-volume manifold with pinched negative sectional curvature, we show that the essential spectrum of the p-form Laplacian is the union of the essential spectra of a collection of ordinary diff...
The flag curvature is a natural extension of the sectional curvature in Riemannian geometry, and the S-curvature is a non-Riemannian quantity which vanishes for Riemannian metrics. There are (incomplete) nonRiemannian Finsler metrics on an open subset in Rn with negative flag curvature and constant S-curvature. In this paper, we are going to show a global rigidity theorem that every Finsler met...
We show that the unit tangent bundle of S4 and a real cohomology CP 3 admit Riemannian metrics with positive sectional curvature almost everywhere. These are the only examples so far with positive curvature almost everywhere that are not also known to admit positive curvature. AMS Classi cation numbers Primary: 53C20 Secondary: 53C20, 58B20, 58G30
Chow and Hamilton introduced the cross curvature flow on closed 3manifolds with negative or positive sectional curvature. In this paper, we study the negative cross curvature flow in the case of locally homogenous metrics on 3manifolds. In each case, we describe the long time behavior of the solutions of the corresponding ODE system.
Here I show that the integral of scalar curvature of a closed Riemannian manifold can be bounded from above in terms of its dimension, diameter, and a lower bound for sectional curvature.
It is known that the topological entropy for the geodesic flow on a Riemannian manifoldM is bounded if the absolute value of sectional curvature |KM | is bounded. We replace this condition by the condition of Ricci curvature and injectivity radius.
In this paper we study the r-stability of closed hypersurfaces with constant r-th mean curvature in Riemannian manifolds of constant sectional curvature. In this setting, we obtain a characterization of the r-stable ones through of the analysis of the first eigenvalue of an operator naturally attached to the r-th mean curvature.
We prove a Liouville property of holomorphic maps from a complete Kähler manifold with nonnegative holomorphic bisectional curvature to a complete simply connected Kähler manifold with a certain assumption on the sectional curvature.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید