نتایج جستجو برای: s y directions in depth z

تعداد نتایج: 17476637  

2010
L. An Q. An Z. H. An J. Z. Bai Y. Ban N. Berger J. M. Bian I. Boyko R. A. Briere V. Bytev X. Cai G. F. Cao X. X. Cao J. F. Chang G. Chelkov G. Chen H. S. Chen J. C. Chen L. P. Chen M. L. Chen P. Chen S. J. Chen Y. B. Chen Y. P. Chu D. Cronin-Hennessy H. L. Dai J. P. Dai D. Dedovich Z. Y. Deng I. Denysenko M. Destefanis Y. Ding L. Y. Dong M. Y. Dong S. X. Du M. Y. Duan J. Fang C. Q. Feng C. D. Fu J. L. Fu Y. Gao C. Geng K. Goetzen W. X. Gong M. Greco S. Grishin Y. T. Gu A. Q. Guo L. B. Guo Y. P. Guo S. Q. Han F. A. Harris K. L. He M. He Z. Y. He Y. K. Heng Z. L. Hou H. M. Hu J. F. Hu T. Hu X. W. Hu B. Huang G. M. Huang J. S. Huang X. T. Huang Y. P. Huang C. S. Ji Q. Ji X. B. Ji X. L. Ji L. K. Jia L. L. Jiang X. S. Jiang J. B. Jiao D. P. Jin S. Jin S. Komamiya W. Kuehn S. Lange J. K. C. Leung Cheng Li Cui Li D. M. Li F. Li G. Li H. B. Li J. Li J. C. Li Lei Li Lu Li Q. J. Li W. D. Li W. G. Li X. L. Li X. N. Li X. Q. Li X. R. Li Y. X. Li Z. B. Li H. Liang T. R. Liang Y. T. Liang Y. F. Liang G. R Liao X. T. Liao B. J. Liu C. L. Liu C. X. Liu C. Y. Liu F. H. Liu Fang Liu Feng Liu G. C. Liu H. Liu H. B. Liu H. M. Liu H. W. Liu J. Liu J. P. Liu K. Liu K. Y Liu Q. Liu S. B. Liu X. H. Liu Y. B. Liu Y. F. Liu Y. W. Liu Yong Liu Z. A. Liu G. R. Lu J. G. Lu Q. W. Lu X. R. Lu Y. P. Lu C. L. Luo M. X. Luo T. Luo X. L. Luo C. L. Ma F. C. Ma H. L. Ma Q. M. Ma X. Ma X. Y. Ma M. Maggiora Y. J. Mao Z. P. Mao J. Min X. H. Mo N.Yu. Muchnoi Y. Nefedov F. P. Ning S. L. Olsen Q. Ouyang M. Pelizaeus K. Peters J. L. Ping R. G. Ping R. Poling C. S. J. Pun M. Qi S. Qian C. F. Qiao J. F. Qiu G. Rong X. D. Ruan A. Sarantsev M. Shao C. P. Shen X. Y. Shen H. Y. Sheng S. Sonoda S. Spataro B. Spruck D. H. Sun G. X. Sun J. F. Sun S. S. Sun X. D. Sun Y. J. Sun Y. Z. Sun Z. J. Sun Z. T. Sun C. J. Tang X. Tang X. F. Tang H. L. Tian D. Toth G. S. Varner

M. Ablikim, M.N. Achasov, L. An, Q. An, Z. H. An, J. Z. Bai, Y. Ban, N. Berger, J.M. Bian, I. Boyko, R. A. Briere, V. Bytev, X. Cai, G. F. Cao, X.X. Cao, J. F. Chang, G. Chelkov,* G. Chen, H. S. Chen, J. C. Chen, L. P. Chen, M. L. Chen, P. Chen, S. J. Chen, Y. B. Chen, Y. P. Chu, D. Cronin-Hennessy, H. L. Dai, J. P. Dai, D. Dedovich, Z. Y. Deng, I. Denysenko, M. Destefanis, Y. Ding, L. Y. Dong,...

2014

Z Š Ò ] Z s ò ~ Z E x z . y Æ j Z á Ð 3 z d$ Z z g Ñ b z q í Å g z Z e$ : Ü s 1 6, Z ã Z z g ¢ ì É ‰ & Ñ B 3 } é G E G ] z $ › Ò 3 ̈ é G G G ] Z z g Ñ z b z j Z Ù Â Z K ́ Z ' ] c* Z Ý Ð Ì i c* Š { c z s ƒ N Z z g  z » % œ/ I , ) 1 ( § ] ó g ~ Å @* g õ ~ Ì Z k n Å g z Z e$ ñ Š ì Š ~ œ ~ — ? çE ~ B â , œ ~ { ~ Æ ˆ 1 x Z y à § ] è I Z z g Z y Å Ñ z b z j Z Ù Ì % A$ ƒ ñ Z z g Z y ~ Ð ‰ ¥ â ] Å Ò ...

2005
H. S. Jhajj M. K. Sharma Lovleen Kumar Grover

For estimating the population variance S y of study variable y, a class of chain estimators of S y has been proposed in the presence of two auxiliary variables x and z by using known information on population mean and variance of the second auxiliary variable z. In this proposed class, the second auxiliary variable z is directly highly correlated with the first auxiliary variable x, whereas the...

2009
Chengmin Hou Sui Sun Cheng

and Applied Analysis 3 here g t ≤ t∗ ≤ t.Hence x l ( g t ) ≥ x n−1 t∗ n − l − 1 ! t − g t n−l−1 ≥ x n−1 t n − l − 1 ! t − g t n−l−1. 1.7 Combining 1.7 and 1.5 , we see that x′ ( g t ) ≥ g l−1 t 2l−1 l − 1 ! n − l − 1 ! n−1 t t − g t n−l−1 1.8 for all large t. Lemma 1.2. Suppose the linear third-order differential equation z′′′ p t z 0, t ∈ I 1.9 has an eventually positive increasing solution on...

1997
J. Z. Bai R. A. Becker-Szendy S. J. Chen M. Chen Y. Q. Chen ll Z. D. Cheng J. A. Coller R. F. Cowan H. C. Cui X. Z. Cui M. J. Fero S. Q. Gao Y. N. Gao J. H. Gu W. X. Gu Y. N. Guo Y. Y. Guo Y. Han D. Q. Huang C. H. Jiang Z. J. Jiang A. S. Johnson P. F. Lang D. Li W. G. Li Y. S. Li S. Z. Lin H. M. Liu Q. Liu R. G. Liu Y. Liu J. G. Lu D. H. Ma E. C. Ma J. M. Ma Z. P. Mao P. L. Wang W. G. Yan H. L. Zhang H. Y. Zhang Jl J. W. Zhang L. S. Zhang S. Q. Zhang Y. Zhang D. X. Zhao M. Zhao P. D. Zhao W. R. Zhao L. S. Zheng Z. P. Zheng G. P. Zhou

J. Z. Bai, (Jl 0. Bardon, <6> R. A. Becker-Szendy, <7> T. H. Burnett, (JOl J. S. Campbell, <9> S. J. Chen, (I} S. M. Chen,<)} Y. Q. Chen, H. C. Cui, (I) X. Z. Cui,< 1> H. L. Ding, (Jl Z. Z. Du, (Jl W. Dunwoodie, <7> C. Fang, (I) M. J. Fero, <6> M. L. Gao, (Jl S. Q. Gao, (J} W. X. Gao, (I} Y. N. Gao,< 1> J. H. Gu,(l} S.D. Gu,(l} W. X. Gu,(l} Y....

Journal: :bulletin of the iranian mathematical society 2011
a. aliabad m. badie

in this paper, we introduce a method by which we can find a close connection between the set of prime $z$-ideals of $c(x)$ and the same of $c(y)$, for some special subset $y$ of $x$. for instance, if $y=coz(f)$ for some $fin c(x)$, then there exists a one-to-one correspondence between the set of prime $z$-ideals of $c(y)$ and the set of prime $z$-ideals of $c(x)$ not containing $f$. moreover, c...

2010
Amin Saif Adem Kılıçman

and Applied Analysis 3 x ∈ X i.e., cl Oa x Oa x for all x ∈ X . Then, ω ∈ Oa z for all z ∈ C. Since x ∈ C, then ω ∈ Oa x . On the other hand, since x ∈ x ⊂ C ⊂ Oa ω , then ω ∈ x . Hence, C x . In the following lemma, we give necessary and sufficient conditions for the equivalence classes to be S-invariant classes. Lemma 2.2. Let S,X, a be an S-flow. A class x ∈ X is an S-invariant class if and ...

2007
Noboru Endou

The papers [23], [24], [4], [5], [2], [20], [21], [9], [1], [22], [13], [15], [16], [12], [10], [11], [17], [14], [25], [3], [7], [6], [19], and [8] provide the notation and terminology for this paper. For simplicity, we adopt the following convention: X denotes a complex Banach algebra, w, z, z1, z2 denote elements of X, k, l, m, n denote natural numbers, s1, s2, s3, s, s ′ denote sequences of...

2008
FRIEDRICH WEHRUNG F. WEHRUNG

We say that a 〈∨, 0〉-semilattice S is conditionally co-Brouwerian, if (1) for all nonempty subsets X and Y of S such that X ≤ Y (i.e., x ≤ y for all 〈x, y〉 ∈ X × Y ), there exists z ∈ S such that X ≤ z ≤ Y , and (2) for every subset Z of S and all a, b ∈ S, if a ≤ b ∨ z for all z ∈ Z, then there exists c ∈ S such that a ≤ b ∨ c and c ≤ Z. By restricting this definition to subsets X , Y , and Z ...

2004
Hiroshi Imura Yuji Sakai Yasunari Shidama

The terminology and notation used in this paper have been introduced in the following articles: [16], [3], [19], [5], [4], [1], [15], [6], [17], [18], [9], [8], [2], [20], [12], [14], [10], [13], [7], and [11]. For simplicity, we adopt the following rules: S, T denote non trivial real normed spaces, x0 denotes a point of S, f denotes a partial function from S to T , h denotes a convergent to 0 ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید