نتایج جستجو برای: ryr2
تعداد نتایج: 1011 فیلتر نتایج به سال:
BACKGROUND Familial polymorphic ventricular tachycardia (FPVT) is characterized by exercise-induced arrhythmias and sudden cardiac death due to missense mutations in the cardiac ryanodine receptor (RyR2), an intracellular Ca2+ release channel required for excitation-contraction coupling in the heart. METHODS AND RESULTS Three RyR2 missense mutations, P2328S, Q4201R, and V4653F, which occur in...
BACKGROUND Rapid pacing rates induce alternations in the cytosolic calcium concentration caused by fluctuations in calcium released from the sarcoplasmic reticulum (SR). However, the relationship between calcium alternans and refractoriness of the SR calcium release channel (RyR2) remains elusive. METHODOLOGY/PRINCIPAL FINDINGS To investigate how ryanodine receptor (RyR2) refractoriness modul...
AIMS The experiments explored for atrial arrhythmogenesis and its possible physiological background in recently developed hetero-(RyR2(+/S)) and homozygotic (RyR2(S/S)) RyR2-P2328S murine models for catecholaminergic polymorphic ventricular tachycardia (VT) for the first time. They complement previous clinical and experimental reports describing increased ventricular arrhythmic tendencies assoc...
Activation of the cardiac ryanodine receptor (RyR2) by Ca(2)+ is an essential step in excitation-contraction coupling in heart muscle. However, little is known about the molecular basis of activation of RyR2 by Ca(2)+. In this study, we investigated the role in Ca(2)+ sensing of the conserved glutamate 3987 located in the predicted transmembrane segment M2 of the mouse RyR2. Single point mutati...
During the classic "fight-or-flight" stress response, sympathetic nervous system activation leads to catecholamine release, which increases heart rate and contractility, resulting in enhanced cardiac output. Catecholamines bind to β-adrenergic receptors, causing cAMP generation and activation of PKA, which phosphorylates multiple targets in cardiac muscle, including the cardiac ryanodine recept...
The luminal Ca2+ regulation of cardiac ryanodine receptor (RyR2) was explored at the single channel level. The luminal Ca2+ and Mg2+ sensitivity of single CSQ2-stripped and CSQ2-associated RyR2 channels was defined. Action of wild-type CSQ2 and of two mutant CSQ2s (R33Q and L167H) was also compared. Two luminal Ca2+ regulatory mechanism(s) were identified. One is a RyR2-resident mechanism that ...
Mechanism of Antiarrhythmic Effects of Flecainide in Catecholaminergic Polymorphic Ventricular Tachycardia To the Editor: We read with interest the recent article by Liu et al, in Circulation Research, on the mechanism underlying the antiarrhythmic effects of flecainide in catecholaminergic polymorphic ventricular tachycardia (CPVT).1 They conclude that Na channel block but not inhibition of th...
Cardiac ryanodine receptor (RyR2) function is modulated by Ca(2+) and Mg(2+). To better characterize Ca(2+) and Mg(2+) binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M(2+): Mg(2+), Ca(2+), Sr(2+), Ba(2+)) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M(2+) binding to high affinity activ...
Using the bacterial K+ channel KcsA as a template, we constructed models of the pore region of the cardiac ryanodine receptor channel (RyR2) monomer and tetramer. Physicochemical characteristics of the RyR2 model monomer were compared with the template, including homology, predicted secondary structure, surface area, hydrophobicity, and electrostatic potential. Values were comparable with those...
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is one of the most lethal inherited cardiac arrhythmias mostly linked to cardiac ryanodine receptor (RyR2) mutations with high disease penetrance. Interestingly, a novel RyR2 mutation G357S discovered in a large family of more than 1400 individuals has reduced penetrance. The molecular basis for the incomplete disease penetrance in th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید