نتایج جستجو برای: radial basis function rbf method
تعداد نتایج: 2989289 فیلتر نتایج به سال:
LIAO, YI. Neural Networks for Pattern Classification and Universal Approximation (Under the direction of Dr. Shu-Cherng Fang and Dr. Henry L. W. Nuttle). This dissertation studies neural networks for pattern classification and universal approximation. The objective is to develop a new neural network model for pattern classification, and relax the conditions for Radial-Basis Function networks to...
The local radial basis function (RBF) interpolation method enables very large-scale data sets to be handled efficiently, overcoming the drawbacks of global interpolation which produces highly ill-conditioned linear systems. Whereas there have been intensive studies on the accuracy of global RBF interpolation, the error analysis of local RBF interpolation is much less investigated. In this regar...
F. Fallside We develop a sequential adaptation algorithm for radial basis function (RBF) neural networks of Gaussian nodes, based on the method of successive F-Projections. This method makes use of each observation efficiently in that the network mapping function so obtained is consistent with that information and is also optimal in the least L 2-norm sense. The RBF network with the F-Projectio...
A radial basis function ( RBF ) neural network depends mainly upon an adequate choice of the number and positions of its basis function centers. In this paper we have proposed an algorithm for RBF neural network and the results may be reduced for artificial neural networks as particular cases.
Radial basis function-Pseudospectral method and Fourier Pseudospectral (FPS) method are extended for stiff nonlinear partial differential equations with a particular emphasis on the comparison of the two methods. Fourth-order Runge-Kutta scheme is applied for temporal discretization. The numerical results indicate that RBF-PS method can be more accurate than standard Fourier pseudospectral meth...
Approximation of scattered geometric data is often a task in many engineering problems. The Radial Basis Function (RBF) approximation is appropriate for large scattered (unordered) datasets in d-dimensional space. This method is useful for a higher dimension d ≥ 2, because the other methods require a conversion of a scattered dataset to a semiregular mesh using some tessellation techniques, whi...
Abstract In this research, a radial basis function artificial neural network (RBF-ANN) model was developed to predict the hot deformation flow curves of API X65 pipeline steel. The results of the developed model was compared with the results of a new phenomenological model that has recently been developed based on a power function of Zener-Hollomon parameter and a third order polynomial functio...
This paper proposes an artificial neural network RBF to classification using feature descriptors. The theoretical and practical aspects of theory F distributions with different degrees of freedom introduced. The distribution F densities are similar in shape, making it difficult to identify the differences between the two densities. This paper is concerned with separating these same probability ...
This paper presents a new method of fault detection and isolation (FDI) for polymer electrolyte membrane (PEM) fuel cell (FC) dynamic systems under an open-loop scheme. This method uses a radial basis function (RBF) neural network to perform fault identification, classification and isolation. The novelty is that the RBF model of independent mode is used to predict the future outputs of the FC s...
This paper presents a new method of fault detection and isolation (FDI) for polymer electrolyte membrane (PEM) fuel cell (FC) dynamic systems under an open-loop scheme. This method uses a radial basis function (RBF) neural network to perform fault identification, classification and isolation. The novelty is that the RBF model of independent mode is used to predict the future outputs of the FC s...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید