نتایج جستجو برای: quaternion matrix equation
تعداد نتایج: 581191 فیلتر نتایج به سال:
let $rin textbf{c}^{mtimes m}$ and $sin textbf{c}^{ntimes n}$ be nontrivial involution matrices; i.e., $r=r^{-1}neq pm~i$ and $s=s^{-1}neq pm~i$. an $mtimes n$ complex matrix $a$ is said to be an $(r, s)$-symmetric ($(r, s)$-skew symmetric) matrix if $ras =a$ ($ ras =-a$). the $(r, s)$-symmetric and $(r, s)$-skew symmetric matrices have a number of special properties and widely used in engi...
This article introduces yet another representation of rotations in 3-space. The rotations form a 3-dimensional projective space, which fact has not been exploited in Computer Science. We use the four affine patches of this projective space to parametrize the rotations. This affine patch representation is more compact than quaternions (which require 4 components for calculations), encompasses th...
We propose a unitary diagonalisation of a special class of quaternion matrices, the socalled η-Hermitian matrices A = AηH , η ∈ {ı, ȷ, κ} arising in widely linear modelling. In 1915, Autonne exploited the symmetric structure of a matrix A = AT to propose its corresponding factorisation (also knownas the Takagi factorisation) in the complex domain C. Similarly, we address the factorisation of an...
The well-known Wahba Problem [1] is a non-linear, weighted least-squares problem that seeks to obtain the optimal attitude matrix from a set of at least two independent vector measurements. The most common technique used to solved the Wahba problem is the so-called q-method, developed by Davenport and documented in [2]. The q-method rearranges the Wahba performance index into a quadratic perfor...
We present the three main mathematical constructs used to represent the attitude of a rigid body in threedimensional space. These are (1) the rotation matrix, (2) a triple of Euler angles, and (3) the unit quaternion. To these we add a fourth, the rotation vector, which has many of the benefits of both Euler angles and quaternions, but neither the singularities of the former, nor the quadratic ...
In this paper, we consider the ranks of four real matrices Gi(i = 0, 1, 2, 3) in M†, where M = M0 +M1i+M2j+M3k is an arbitrary quaternion matrix, and M† = G0 + G1i + G2j + G3k is the Moore-Penrose inverse of M . Similarly, the ranks of four real matrices in Drazin inverse of a quaternion matrix are also presented. As applications, the necessary and sufficient conditions for M† is pure real or p...
In this paper, we first define the Teodorescu operator [Formula: see text] related to the Helmholtz equation and discuss its properties in quaternion analysis. Then we propose the Riemann boundary value problem related to the Helmholtz equation. Finally we give the integral representation of the boundary value problem by using the previously defined operator.
In the paper a new structure of Multi-Layer Perceptron, able to deal with quaternion-valued signal, is proposed. A learning algorithm for the proposed Quaternion MLP (QMLP) is also derived. Such a neural network allows to interpolate functions of quaternion variable with a smaller number of connections with respect to the corresponding real valued MLP. INTRODUCTION In the last few years, neural...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید