نتایج جستجو برای: qca quantumdot cellular automata
تعداد نتایج: 455537 فیلتر نتایج به سال:
Quantum-dot Cellular Automata (QCA) as a nanoscale transistor-less device technology offers distinguishing advantages over the limitations of CMOS circuits. While more than 2 decades of design progress have been achieved with QCA, a comprehensive composition approach for the layout design in this technology is needed. In this study, the Priority-Phased Decomposition-Driven (PPDD) QCA logic desi...
Quantum Cellular Automata (QCA) present one of the many emerging computational nanotechnology paradigms. It uses the arrangements of individual electrons, instead of currents and voltages, to encode binary information. Note a QCA cell consists of four quantum dots located at the corners of a square. This tutorial paper provides an introductory material on the design and testing of combinational...
Quantum cellular automata (QCA) is an innovative approach that incorporates quantum entities in classical computation processes. Binary information is encoded in different charge states of the QCA cells and transmitted by the inter-cell Coulomb interaction. Despite the promise of QCA, however, it remains a challenge to identify suitable building blocks for the construction of QCA. Graphene has ...
Quantum-dot cellular automata (QCA) is a novel, current-free approach to computing at the nanoscale, which, if realized in computing devices, will have broad-reaching effects in the electronics industry. First, the concept of QCA is outlined. Next, personal research topics are proposed, to include the development of theoretical quantum-dynamic models of switching QCA cells; the development of a...
One of the several promising new technologies for computing at nano-scale is quantum-dot cellular automata (QCA). In this paper, new designs for different QCA sequential circuits are presented. Using an efficient QCA D flip-flop (DFF) architecture, a 5-bit counter, a novel single edge generator (SEG) and a divide-by-2 counter are implemented. Also, some types of oscillators, a new edge-t...
Quantum cellular automata (QCA) is a new technology in nano metre scale to support nanotechnology. QCA is very effective in terms of high space density and power dissipation and will be playing a major role in the development of the Quantum computer with low power consumption and high speed. This paper describes the design and layout of a 2-bit ALU based on quantum-dot cellular automata (QCA) u...
The large amount of secondary effects in complementary metal–oxide–semiconductor technology limits its application the ultra-nanoscale region. Circuit designers explore a new for region, which is quantum-dot cellular automata (QCA). Low-energy dissipation, high speed, and area efficiency are key features QCA technology. This research proposes novel, low-complexity, QCA-based one-bit digital com...
Quantum cellular automata (QCA) have been used widely to digital circuits and systems. QCA technology is a promising alternative to CMOS technology. It is attractive due to its fast speed, small area and low power consumption, higher scale integration, higher switching frequency than transistor based technology. Various QCA circuits, Multivalve Reversible Logic (MVL) Circuit as well as Feynman ...
In this paper we present a systematic view of Quantum Cellular Automata (QCA), a mathematical formalism of quantum computation. First we give a general mathematical framework with which to study QCA models. Then we present four different QCA models, and compare them. One model we discuss is the traditional QCA, similar to those introduced by Shumacher and Werner, Watrous, and Van Dam. We discus...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید