نتایج جستجو برای: q matrix

تعداد نتایج: 478442  

سید اکبر خداپرست غلامحسن توانائی, یزدان فضلعلی

سفیدک پودری، جدی ترین بیماری اندام های سبز درختان بلوط در جهان می باشد که شدت آن با توجه به گونة قارچ عامل و گونة درخت میزبان متفاوت است. این بیماری در جنگلهای ارسباران بسیار شایع بوده و درختان بلوط مستقر در این جنگلها را تحت تأثیر قرار می دهد. براساس منابع موجود، دست کم 15 گونه قارچ عامل بیماری سفیدک پودری از روی حدود 92 گونه از درختان جنس Quercus در سطح جهان گزارش گردیده است. در این تحقیق، با...

1999
VAIDYANATH MANI ROBERT E. HARTWIG

The Vandermonde and con uent Vandermonde matrices are of fundamental signi cance in matrix theory. A further generalization of the Vandermonde matrix called the q-adic coe cient matrix was introduced in [V. Mani and R. E. Hartwig, Lin. Algebra Appl., to appear]. It was demonstrated there that the q-adic coe cient matrix reduces the Bezout matrix of two polynomials by congruence. This extended t...

1996
R. Jagannathan

The dually conjugate Hopf algebras Funp,q(R) and Up,q(R) associated with the two-parametric (p, q)-Alexander-Conway solution (R) of the Yang-Baxter equation are studied. Using the Hopf duality construction, the full Hopf structure of the quasitriangular enveloping algebra Up,q(R) is extracted. The universal T matrix for Funp,q(R) is derived. While expressing an arbitrary group element of the qu...

2008
RADU CASCAVAL

In this note we prove that the maximally defined operator associated with the Dirac-type differential expression M(Q) = i ( d dx Im −Q −Q − d dx Im ) , where Q represents a symmetric m × m matrix (i.e., Q(x) = Q(x) a.e.) with entries in L loc (R), is J -self-adjoint, where J is the antilinear conjugation defined by J = σ1C, σ1 = ( 0 Im Im 0 ) and C(a1, . . . , am, b1, . . . , bm) = (a1, . . . ,...

2005
Tiffany Barnes Donald L. Bitzer Mladen A. Vouk

The q-matrix method, a new method for data mining and knowledge discovery, is compared with factor analysis and cluster analysis in analyzing fourteen experimental data sets. This method creates a matrix-based model that extracts latent relationships among observed binary variables. Results show that the q-matrix method offers several advantages over factor analysis and cluster analysis for kno...

2004
Tom H. Koornwinder

For little q-Jacobi polynomials, q-Hahn polynomials and big q-Jacobi polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as decompositions into a lower triangular matrix times upper triangular matrix. We develop a general theory of such decompositions rela...

2004
Tom H. Koornwinder

For little q-Jacobi polynomials, q-Hahn polynomials and big q-Jacobi polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as decompositions into a lower triangular matrix times upper triangular matrix. We develop a general theory of such decompositions rela...

2011
MAO-LIN LIANG

Let m × m complex matrix P and n × n complex matrix Q be k-involutions, i.e., Pk−1 = P, Qk−1 = Q for some integer k ≥ 2. An m × n complex matrix A is (P, Q, β)symmetric if PAQ = λβA, or (P, Q, α, β)-symmetric if PAQ−α = λβA, where λ = e2πi/k and α, β ∈ {1, 2, . . . , k}. In this paper, for given matrices X, Y, E, F with appropriate sizes, the solvability of matrix equations AX = E and Y A = F u...

1987
KAZUO MUROTA K. MUROTA M. SCHARBRODT

This paper presents an improved algorithm for computing the Combinatorial Canonical Form (CCF) of a layered mixed matrix A = Q T , which consists of a numerical matrix Q and a generic matrix T . The CCF is the (combinatorially unique) nest block-triangular form obtained by the row operations on the Q-part, followed by permutations of rows and columns of the whole matrix. The main ingredient of ...

Journal: :CoRR 2012
Igor Sergeev

The present paper deals with the complexity of computation of a sequence of Boolean matrices via universal commutative additive circuits, i.e. circuits of binary additions over the group (Z, +) (an additive circuit implementing a matrix over (Z, +), implements the same matrix over any commutative semigroup (S, +).) Basic notions of circuit and complexity see in [3, 5]. Denote the complexity of ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید