نتایج جستجو برای: premature convergence

تعداد نتایج: 172540  

2008
Hong Zhang Masumi Ishikawa

How to keep a balance between exploitation and exploration in Particle Swarm Optimization (PSO) for efficiently solving various optimization problems is an important issue. In order to handle premature convergence in PSO search, this paper proposes a novel algorithm, called Particle Swarm Optimization with Diversive Curiosity (PSO/DC), that introduces a mechanism of diversive curiosity into PSO...

2015
Kaiyou Lei Changjiu Pu

Many engineering problems are the complex optimization problems with the large numbers of global andlocal optima. Due to its complexity, general particle swarm optimization method inclines towards stagnation phenomena in the later stage of evolution, which leads to premature convergence. Therefore, a highly efficient particle swarm optimizer is proposed in this paper, which employ the dynamic t...

2015
Parampal Singh Balwinder Singh Dhaliwal

In this paper a narrative approach for designing FIR low pass filter is presented by practicing hybrid technique of Swine Influenza Model based Optimization (SIMBO) and Genetic Algorithm (GA). Premature convergence was the major difficulty faced by SIMBO algorithm individually in FIR filter design. To address this problem, a hybrid SIMBO-GA is proposed in this paper. GA is used to help SIMBO es...

Journal: :Appl. Soft Comput. 2010
Min-Rong Chen Xia Li Xi Zhang Yong-Zai Lu

Particle swarm optimization (PSO) has received increasing interest from the optimization community due to its simplicity in implementation and its inexpensive computational overhead. However, PSO has premature convergence, especially in complex multimodal functions. Extremal Optimization (EO) is a recently developed local-search heuristic method and has been successfully applied to a wide varie...

2003
Jan T. Kim

Evolutionary algorithms can be used to solve complex optimization tasks. However, adequate parameterization is crucial for efficient optimization. Evolutionary adaptation of mutation rates provides a solution to the problem of finding suitable mutation rate settings. However, evolution of low mutation rates may lead to premature convergence. In nature, mutation rate control coevolves with other...

2010
Sreekanth Reddy

Abstract: The economic dispatch has the objective of generation allocation to the power generators in such a way that the total fuel cost is minimized while all operating constraints are satisfied. The schematic methods assume the cost curves of generators are linear but in case of modern generators this assumption makes inaccuracy in economic dispatch because of valve point loading effect, pro...

2011
Weng Cho Chew B. Mhamdi K. Grayaa

Recently, the use of the particle swarm optimization (PSO) technique for the reconstruction of microwave images has received increasing interest from the optimization community due to its simplicity in implementation and its inexpensive computational overhead. However, the basic PSO algorithm is easily trapping into local minimum and may lead to the premature convergence. When a local optimal s...

Journal: :Polibits 2012
Gonzalo Nápoles Isel Grau Rafael Bello

Particle Swarm Optimization (PSO) is a bioinspired meta-heuristic for solving complex global optimization problems. In standard PSO, the particle swarm frequently gets attracted by suboptimal solutions, causing premature convergence of the algorithm and swarm stagnation. Once the particles have been attracted to a local optimum, they continue the search process within a minuscule region of the ...

2003
Michael Affenzeller Stefan Wagner

This paper presents a new generic Evolutionary Algorithm (EA) for retarding the unwanted effects of premature convergence. This is accomplished by a combination of interacting methods. To be intent on this a new selection scheme is introduced, which is designed to maintain the genetic diversity within the population by advantageous self-adaptive steering of selection pressure. Additionally this...

2013
Manju Sharma Sanjay Tyagi Rakesh Kumar

Premature Convergence and genetic drift are the inherent characteristics of genetic algorithms that make them incapable of finding global optimal solution. A memetic algorithm is an extension of genetic algorithm that incorporates the local search techniques within genetic operations so as to prevent the premature convergence and improve performance in case of NP-hard problems. This paper propo...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید