نتایج جستجو برای: pabon lasso
تعداد نتایج: 4554 فیلتر نتایج به سال:
We consider the problem of selecting functional variables using the L1 regularization in a functional linear regression model with a scalar response and functional predictors in the presence of outliers. Since the LASSO is a special case of the penalized least squares regression with L1-penalty function it suffers from the heavy-tailed errors and/or outliers in data. Recently, the LAD regressio...
Yuan an Lin (2004) proposed the grouped LASSO, which achieves shrinkage and selection simultaneously, as LASSO does, but works on blocks of covariates. That is, the grouped LASSO provides a model where some blocks of regression coefficients are exactly zero. The grouped LASSO is useful when there are meaningful blocks of covariates such as polynomial regression and dummy variables from categori...
The Lasso is an attractive regularisation method for high dimensional regression. It combines variable selection with an efficient computational procedure. However, the rate of convergence of the Lasso is slow for some sparse high dimensional data, where the number of predictor variables is growing fast with the number of observations. Moreover, many noise variables are selected if the estimato...
چکیده زمینه و هدف: شاخص های بیمارستانی مهمترین عامل نشان دهنده عملکرد بیمارستان می باشند. ابزاری هستند، برای مقایسه میزان خدمات، ارزیابی خدمات، مقایسه خدمات با استانداردها، یا برای مقایسه با سالهای گذشته از آن استفاده می شود. هدف این پژوهش بررسی عملکرد و سنجش کارایی بیمارستان های دانشگاهی استان با استفاده از نمودار پابن لاسو مقایسه آن با شاخص های کشوری می باشد مواد و روش کار: این پژوهش یک مطالع...
چکیده زمینه و هدف: شاخص های بیمارستانی مهمترین عامل نشان دهنده عملکرد بیمارستان می باشند. ابزاری هستند، برای مقایسه میزان خدمات، ارزیابی خدمات، مقایسه خدمات با استانداردها، یا برای مقایسه با سالهای گذشته از آن استفاده می شود. هدف این پژوهش بررسی عملکرد و سنجش کارایی بیمارستان های دانشگاهی استان با استفاده از نمودار پابن لاسو مقایسه آن با شاخص های کشوری می باشد مواد و روش کار: این پژوهش یک مطالع...
In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both l...
We consider an iterated Lasso approach for variable selection and estimation in sparse, high-dimensional logistic regression models. In this approach, we use the Lasso (Tibshirani 1996) to obtain an initial estimator and reduce the dimension of the model. We then use the Lasso as the initial estimator in the adaptive Lasso (Zou 2006) to obtain the final selection and estimation results. We prov...
Adaptive lasso is a weighted `1 penalization method for simultaneous estimation and model selection. It has oracle properties of asymptotic normality with optimal convergence rate and model selection consistency. Instrumental variable selection has become the focus of much research in areas of application for which datasets with both strong and weak instruments are available. This paper develop...
In high dimensional settings, sparse structures are crucial for efficiency, both in term of memory, computation and performance. It is customary to consider `1 penalty to enforce sparsity in such scenarios. Sparsity enforcing methods, the Lasso being a canonical example, are popular candidates to address high dimension. For efficiency, they rely on tuning a parameter trading data fitting versus...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید