نتایج جستجو برای: nsga ii metaheuristic algorithm

تعداد نتایج: 1314299  

2012
Ashish Saini Amit Saraswat

This paper presents an application of elitist non-dominated sorting genetic algorithm (NSGA-II) for solving a multi-objective reactive power market clearing (MO-RPMC) model. In this MO-RPMC model, two objective functions such as total payment function (TPF) for reactive power support from generators/synchronous condensers and voltage stability enhancement index (VSEI) are optimized simultaneous...

2004
In-Hee Lee Soo-Yong Shin Byoung-Tak Zhang

A multi-objective optimization problem (MOP) is often found in real-world optimization problem. Among various multiobjective optimization techniques, multi-objective evolutionary algorithm (MOEA) is highlighted as a good candidate due to its flexibility, feasibility, and its ability to handle multiple solutions. Among various MOEAs, we analyze 2MOEA which can achieve good convergence and divers...

This paper considers the job scheduling problem in virtual manufacturing cells (VMCs) with the goal of minimizing two objectives namely, makespan and total travelling distance. To solve this problem two algorithms are proposed: traditional non-dominated sorting genetic algorithm (NSGA-II) and knowledge-based non-dominated sorting genetic algorithm (KBNSGA-II). The difference between these algor...

This paper presents a multi-objective resource-constrained project scheduling problem with positive and negative cash flows. The net present value (NPV) maximization and making span minimization are this study objectives. And since this problem is considered as complex optimization in NP-Hard context, we present a mathematical model for the given problem and solve three evolutionary algorithms;...

Time-dependent Vehicle Routing Problem is one of the most applicable but least-studied variants of routing and scheduling problems. In this paper, a novel mathematical formulation of time-dependent vehicle routing problems with heterogeneous fleet, hard time widows and multiple depots, is proposed. To deal with the traffic congestions, we also considered that the vehicles are not forced to come...

Journal: :سنجش از دور و gis ایران 0
علی اکبر متکان دانشگاه شهید بهشتی علیرضا شکیبا دانشگاه شهید بهشتی بابک میرباقری دانشگاه شهید بهشتی مهران شایگان دانشگاه تربیت مدرس محمد تناسان دانشگاه شهید بهشتی

with the increase in population and consequent increasing needs of society, land use planning is of particular importance. land use planning due to being involved with several conflicting aims, multi- objective evolutionary algorithm would be a useful tool to solve land use planning. but use of these algorithms should be examined according to the type of issues. in the study, addition to introd...

This research aims to predict PV output power by using different neuro-evolutionary methods. The proposed approach was evaluated by a data set, which was collected at 5-minute intervals in the photovoltaic laboratory of Niroo Research Institute of Iran (Tehran). The data has been divided into three intervals based on the amount of solar irradiation, and different neural networks were used for p...

2005
Eduardo José Solteiro Pires Paulo B. de Moura Oliveira José António Tenreiro Machado

Obtaining a well distributed non-dominated Pareto front is one of the key issues in multi-objective optimization algorithms. This paper proposes a new variant for the elitist selection operator to the NSGA-II algorithm, which promotes well distributed non-dominated fronts. The basic idea is to replace the crowding distance method by a maximin technique. The proposed technique is deployed in wel...

Journal: :JSW 2011
Xie Yuan

A kind of unrelated parallel machines scheduling problem is discussed. The memberships of fuzzy due dates denote the grades of satisfaction with respect to completion times with jobs. Objectives of scheduling are to maximize the minimum grade of satisfaction while makespan is minimized in the meantime. Two kind of genetic algorithms are employed to search optimal solution set of the problem. Bo...

2002
Shinya Watanabe Mitsunori Miki

In this paper, we propose a new genetic algorithm for multi-objective optimization problems. That is called “Neighborhood Cultivation Genetic Algorithm (NCGA)”. NCGA includes the mechanisms of other methods such as SPEA2 and NSGA-II. Moreover, NCGA has the mechanism of neighborhood crossover. Because of the neighborhood crossover, the effective search can be performed and good results can be de...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->