نتایج جستجو برای: non central principal component analysis

تعداد نتایج: 4632641  

2005
JAN DE LEEUW

A. Two quite different forms of nonlinear principal component analysis have been proposed in the literature. The first one is associated with the names of Guttman, Burt, Hayashi, Benzécri, McDonald, De Leeuw, Hill, Nishisato. We call itmultiple correspondence analysis. The second form has been discussed by Kruskal, Shepard, Roskam, Takane, Young, De Leeuw, Winsberg, Ramsay. We call it no...

2004
Jun Liu Songcan Chen Zhi-Hua Zhou

Principal Component Analysis (PCA) is a feature extraction approach directly based on a whole vector pattern and acquires a set of projections that can realize the best reconstruction for an original data in the mean squared error sense. In this paper, the progressive PCA (PrPCA) is proposed, which could progressively extract features from a set of given data with large dimensionality and the e...

2002
Mohamed N. Nounou Bhavik R. Bakshi Prem K. Goel Xiaotong Shen

Principal component analysis (PCA) is a dimensionality reduction modeling technique that transforms a set of process variables by rotating their axes of representation. Maximum Likelihood PCA (MLPCA) is an extension that accounts for different noise contributions in each variable. Neither PCA nor its extensions utilize external information about the model or data such as the range or distributi...

2011
Wieland Brendel Ranulfo Romo Christian K. Machens

In many experiments, the data points collected live in high-dimensional observation spaces, yet can be assigned a set of labels or parameters. In electrophysiological recordings, for instance, the responses of populations of neurons generally depend on mixtures of experimentally controlled parameters. The heterogeneity and diversity of these parameter dependencies can make visualization and int...

Journal: :Operations Research 2014
Yi-Hao Kao Benjamin Van Roy

We consider a problem involving estimation of a high-dimensional covariance matrix that is the sum of a diagonal matrix and a low-rank matrix, and making a decision based on the resulting estimate. Such problems arise, for example, in portfolio management, where a common approach employs principal component analysis (PCA) to estimate factors used in constructing the low-rank term of the covaria...

2016
Yonathan AFLALO Ron KIMMEL

Given a set of signals, a classical construction of an optimal truncatable basis for optimally representing the signals, is the principal component analysis (PCA for short) approach. When the information about the signals one would like to represent is a more general property, like smoothness, a different basis should be considered. One example is the Fourier basis which is optimal for represen...

2014
Christos Boutsidis Dan Garber Zohar Karnin

We consider the online version of the well known Principal Component Analysis (PCA) problem. In standard PCA, the input to the problem is a set of vectors X = [x1, . . . , xn] in Rd×n and a target dimension k < d; the output is a set of vectors Y = [y1, . . . , yn] in Rk×n that minimize minΦ ‖X − ΦY ‖F where Φ is restricted to be an isometry. The global minimum of this quantity, OPTk, is obtain...

2006
Feng Tang Hai Tao

Efficient and compact representation of images is a fundamental problem in computer vision. Principal Component Analysis (PCA) has been widely used for image representation and has been successfully applied to many computer vision algorithms. In this paper, we propose a method that uses Haar-like binary box functions to span a subspace which approximates the PCA subspace. The proposed method ca...

2009
JASON MORTON

Multivariate Gaussian data is completely characterized by its mean and covariance, yet modern non-Gaussian data makes higher-order statistics such as cumulants inevitable. For univariate data, the third and fourth scalar-valued cumulants are relatively well-studied as skewness and kurtosis. For multivariate data, these cumulants are tensor-valued, higher-order analogs of the covariance matrix c...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید