نتایج جستجو برای: neuro fuzzy models

تعداد نتایج: 1002602  

2014
Chuen-Jyh Chen Shih-Ming Yang Shih-Guei Lin

It is known that neuro-fuzzy system is easily stuck in local minimum. To improve these drawbacks, a two-stage algorithm combining the advantages of neuro-fuzzy and genetic algorithms (GA) is integrated in system identification. Genetic algorithms are general purposed optimization algorithms with adaptive reproduction, crossover, and mutation operators that provide a method to search optimal par...

Journal: :Neural networks : the official journal of the International Neural Network Society 2001
J. Manuel Cano Izquierdo Yannis A. Dimitriadis Eduardo Gómez-Sánchez Juan López Coronado

Neuro-fuzzy systems have been in the focus of recent research as a solution to jointly exploit the main features of fuzzy logic systems and neural networks. Within the application literature, neuro-fuzzy systems can be found as methods for function identification. This approach is supported by theorems that guarantee the possibility of representing arbitrary functions by fuzzy systems. However,...

2006
Yan Shi Paul Messenger Masaharu Mizumoto M. MIZUMOTO

In this paper, the idea of the neuro-fuzzy learning algorithm has been extended, by which the tuning parameters in the fuzzy rules can be learned without changing the fuzzy rule table form used in usual fuzzy applications. A new neuro-fuzzy learning algorithm in the case of the fuzzy singleton-type reasoning method has been proposed. Due to the flexibility of the fuzzy singleton-type reasoning ...

Ajaya Kumar Pani Amey Pathak Kumar Siddharth

A debutanizer column is an integral part of any petroleum refinery. Online composition monitoring of debutanizer column outlet streams is highly desirable in order to maximize the production of liquefied petroleum gas. In this article, data-driven models for debutanizer column are developed for real-time composition monitoring. The dataset used has seven process variables as inputs and the outp...

1997
Detlef Nauck

This paper reviews neuro-fuzzy systems, which combine methods from neural network theory with fuzzy systems. Such combinations have been considered for several years already. However, the term neuro-fuzzy still lacks proper deenition, and still has the avour of a buzzword to it. Surprisingly few neuro-fuzzy approaches do actually employ neural networks, even though they are very often depicted ...

2000
Flávio Joaquim de Souza Marley M. B. R. Vellasco Marco Aurélio Cavalcanti Pacheco

This paper presents a new hybrid neuro-fuzzy model which is capable of learning structure and parameters by means of recursive binary space partitioning BSP. Introduction Neuro-fuzzy systems (NFSs) [1] combine the learning ability of artificial neural nets (ANNs) with the linguistic interpretation capacity of fuzzy inference systems (FISs) [2]. This work makes use of BSP (Binary Space Partition...

This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...

Journal: :Int. J. Fuzzy Logic and Intelligent Systems 2009
Bo-Hyeun Wang

This paper proposes a method to improve the accuracy of a short-term electrical load forecasting (STLF) system based on neuro-fuzzy models. The proposed method compensates load forecasts based on the error obtained during the previous prediction. The basic idea behind this approach is that the error of the current prediction is highly correlated with that of the previous prediction. This simple...

2013
K. VIJAYA USHA RANI

This paper presents an introduction to modelling the non-linear systems by using novel methods of Soft Computing. It lists the principal variants of soft computing. One of the wide areas of research related to hybrid systems in Soft Computing i.e., Neuro-Fuzzy method is focused and its methodology is specified.. Nuero-Fuzzy Systems are applied over various domains and resulted with accurate res...

2015
Jayesh S. Patel

BOD is a parameter frequently used to evaluate the water quality on different rivers. The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adapti ve Neuro-Fuzzy Inference System) in water quality BOD prediction for the case study, Mahi river at Khanpur in Thasara Taluka of Kheda District in Gujarat State, India. The proposed technique...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید