نتایج جستجو برای: multiplicative zagreb eccentricity indices
تعداد نتایج: 104169 فیلتر نتایج به سال:
For a (molecular) graph, the first Zagreb index M1 is equal to the sum of squares of the vertex degrees, and the second Zagreb index M2 is equal to the sum of products of degrees of pairs of adjacent vertices. In this paper, we investigate Zagreb indices of bicyclic graphs with a given matching number. Sharp upper bounds for the first and second Zagreb indices of bicyclic graphs in terms of the...
The reformulated Zagreb indices of a graph is obtained from the classical Zagreb by replacing vertex degree by edge degree and are defined as sum of squares of the degree of the edges and sum of product of the degrees of the adjacent edges. In this paper we give some explicit results for calculating the first and second reformulated Zagreb indices of dendrimers. Mathematics Subject Classificati...
The Zagreb indices are the oldest graph invariants used in mathematical chemistry to predict the chemical phenomena. In this paper we define the multiple versions of Zagreb indices based on degrees of vertices in a given graph and then we compute the first and second extremal graphs for them.
we give sharp upper bounds on the zagreb indices and lower bounds on the zagreb coindices of chemical trees and characterize the case of equality for each of these topological invariants.
The authors Miličević et al. introduced the reformulated Zagreb indices [1], which is a generalization of classical Zagreb indices of chemical graph theory. In this paper, we mainly consider the maximum and minimum for the first reformulated index of graphs with connectivity at most k. The corresponding extremal graphs are characterized.
We give sharp upper bounds on the Zagreb indices and lower bounds on the Zagreb coindices of chemical trees and characterize the case of equality for each of these topological invariants.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید