نتایج جستجو برای: mopso
تعداد نتایج: 467 فیلتر نتایج به سال:
One of the most important aspects affecting the performance of a supply chain is the management of inventories. Managing inventory in complex supply chains is typically difficult, and may have a significant impact on the customer service level and system-wide costs. The main challenge of inventory management is that almost every inventory problem involves multiple and conflicting objectives tha...
The time-cost trade-off problem is a known bi-objective problem in the field of project management. Recently, a new parameter, the quality of the project has been added to previously considered time and cost parameters. The main specification of the time-cost trade-off problem is discretization of the decision space to limited and accountable decision variables. In this situation the efficiency...
<p style='text-indent:20px;'>A combined location-routing-inventory system (CLRIS) in a three-echelon supply chain network is studied with environmental considerations. Specifically, bi-objective mixed integer programming model formulated for the CLRIS to deal trade-offs between total cost and carbon-capped difference (CCD). A multi-objective particle swarm optimization (MOPSO) heuristic s...
Abstract Multiobjective particle swarm optimization (MOPSO) algorithm faces the difficulty of prematurity and insufficient diversity due to selection inappropriate leaders inefficient evolution strategies. Therefore, circumvent rapid loss population premature convergence in MOPSO, this paper proposes a knowledge-guided multiobjective using fusion learning strategies (KGMOPSO), which an improved...
Given the growth of wireless networks and increase advantages applications communication networks, especially mobile ad hoc (MANETs), this type network has attracted attention users researchers more than before. The benefit these types in various kinds environments is that MANET does not require to hardware infrastructure communicate send receive data packets within network. It one main reasons...
اغلب مسائل تصمیمگیری در دنیای واقعی بهویژه در زمینه مدیریت منابع آب، مسائل چندهدفهای هستند که تصمیمگیری بر اساس اهداف متفاوت و متضاد انجام میشود. با توجه به دامنه وسیع کاربرد اینگونه مسائل، مدلهای متفاوتی برای حل آنها پیشنهاد شده است، که از مهمترین آنها میتوان به مدلهای بهینهسازی چندهدفه NSGA-II و MOPSO اشاره کرد. هدف از این پژوهش مقایسه عملکرد الگوریتمهای NSGA-II و MOPSO در حل مس...
Reducing energy consumption and maintenance costs of a pumping system is seen as an important but difficult multi-objective optimization problem. Many evolutionary algorithms, such particle swarm (PSO), (MOPSO), non-dominated sorting genetic algorithm II (NSGA-II) have been used. However, lack comparison between these approaches poses challenge to the selection approach for stormwater drainage ...
افزایش نیاز به زمین و محدودیت عرضه آن، نحوه استفاده از زمین را به چالشی اساسی در عرصه برنامه ریزی شهری تبدیل کرده است. در این میان، چینش مناسب و بهینه کاربری ها در کنار یکدیگر از چالش های اصلی برنامه ریزی کاربری اراضی شهری به شمار می آید. هدف اصلی پژوهش حاضر، به کارگیری الگوریتم بهینه سازی چندهدفه تجمعی ذرات ( mopso ) به منظور دستیابی به چینش بهینه کاربری های شهری در سطح ریزدانه است. در تدوین م...
In extending the Particle Swarm Optimisation methodology to multi-objective problems it is unclear how global guides for particles should be selected. Previous work has relied on metric information in objective space, although this is at variance with the notion of dominance which is used to assess the quality of solutions. Here we propose methods based exclusively on dominance for selecting gu...
Particle Swarm Optimizers (PSOs) have been applied to solve Multi-Objective Optimization Problems (MOPs) for its successful applications in solving single objective optimization problems and are named as Multi-Objective PSOs (MOPSOs). However, MOPSOs are often trapped in local optima, cost more function evaluations and suffer from the curse of dimensionality. A cooperative coevolutionary and ε-...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید