نتایج جستجو برای: module zero morphism
تعداد نتایج: 216156 فیلتر نتایج به سال:
The Jacobian Conjecture can be generalized and is established : Let S be a polynomial ring over a field of characteristic zero in finitely may variables. Let T be an unramified, finitely generated extension of S with T = k. Then T = S. Let k be an algebraically closed field, let k be an affine space of dimension n over k and let f : k −→ k be a morphism of algebraic varieties. Then f is given b...
For a (co)monad Tl on a category M, an object X in M, and a functor Π : M → C, there is a (co)simplex Z := ΠTl ∗+1 X in C. The aim of this paper is to find criteria for para(co)cyclicity of Z. Our construction is built on a distributive law of Tl with a second (co)monad Tr on M, a natural transformation i : ΠTl → ΠTr , and a morphism w : TrX → TlX in M. The (symmetrical) relations i and w need ...
A finitely generated $R$-module is said to be a module of type ($F_r$) if its $(r-1)$-th Fitting ideal is the zero ideal and its $r$-th Fitting ideal is a regular ideal. Let $R$ be a commutative ring and $N$ be a submodule of $R^n$ which is generated by columns of a matrix $A=(a_{ij})$ with $a_{ij}in R$ for all $1leq ileq n$, $jin Lambda$, where $Lambda $ is a (possibly infinite) index set. ...
throughout this dissertation r is a commutative ring with identity and m is a unitary r-module. in this dissertation we investigate submodules of multiplication , prufer and dedekind modules. we also stat the equivalent conditions for which is ring , wher l is a submodule of afaithful multiplication prufer module. we introduce the concept of integrally closed modules and show that faithful mu...
The Jacobian Conjecture can be generalized and is established : Let S be a polynomial ring over a field of characteristic zero in finitely may variables. Let T be an unramified, finitely generated extension of S with T = k. Then T = S. Let k be an algebraically closed field, let k be an affine space of dimension n over k and let f : k −→ k be a morphism of algebraic varieties. Then f is given b...
The Jacobian Conjecture can be generalized and is established : Let S be a polynomial ring over a field of characteristic zero in finitely may variables. Let T be an unramified, finitely generated extension of S with T = k. Then T = S. Let k be an algebraically closed field, let k be an affine space of dimension n over k and let f : k −→ k be a morphism of algebraic varieties. Then f is given b...
The Jacobian Conjecture can be generalized and is established : Let S be a polynomial ring over a field of characteristic zero in finitely may variables. Let T be an unramified, finitely generated extension of S with T = k. Then T = S. Let k be an algebraically closed field, let k be an affine space of dimension n over k and let f : k −→ k be a morphism of algebraic varieties. Then f is given b...
The Jacobian Conjecture is established : Let T be a polynomial ring over a field k of characteristic zero in finitely may variables. Let S be a k-subalgebra of T such that T is unramified over S. Then T = S. Let k be an algebraically closed field, let k be an affine space of dimension n over k and let f : k −→ k be a morphism of algebraic varieties. Then f is given by coordinate functions f1, ....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید