نتایج جستجو برای: m convex function
تعداد نتایج: 1717049 فیلتر نتایج به سال:
This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...
We characterize generalized extreme points of compact convex sets. In particular, we show that if the polyconvex hull is convex in m×n , min(m,n) 6 2, then it is constructed from polyconvex extreme points via sequential lamination. Further, we give theorems ensuring equality of the quasiconvex (polyconvex) and the rank-1 convex envelopes of a lower semicontinuous function without explicit conve...
The METR technical reports are published as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and c...
Given a function f : I → J and a pair of means M and N, on the intervals I and J respectively, we say that f is MN -convex provided that f (M(x, y)) N(f (x), f (y)) for every x , y ∈ I . In this context, we prove the validity of all basic inequalities in Convex Function Theory, such as Jensen’s Inequality and the Hermite-Hadamard Inequality. Mathematics subject classification (2000): 26A51, 26D...
The concept of jump system, introduced by Buchet and Cunningham (1995), is a set of integer points with a certain exchange property. In this paper, we discuss several linear and convex optimization problems on jump systems and show that these problems can be solved in polynomial time under the assumption that a membership oracle for a jump system is available. We firstly present a polynomial-ti...
A basic algorithm for the minimization of a differentiable convex function (in particular, a strictly convex quadratic function) defined on the convex hull of m points in R is outlined. Each iteration of the algorithm is implemented in barycentric coordinates, the number of which is equal tom. The method is based on a new procedure for finding the projection of the gradient of the objective fun...
In the eld of nonlinear programming (in continuous variables) convex analysis [21, 22] plays a pivotal role both in theory and in practice. An analogous theory for discrete optimization (nonlinear integer programming), called \discrete convex analysis" [18, 17], is developed for L-convex and M-convex functions by adapting the ideas in convex analysis and generalizing the results in matroid theo...
A function f is said to be cone superadditive if there exists a partition of R into a family of polyhedral convex cones such that f(z + x) + f(z + y) ≤ f(z) + f(z + x+ y) holds whenever x and y belong to the same cone in the family. This concept is useful in nonlinear integer programming in that, if the objective function is cone superadditive, the global minimality can be characterized by loca...
In this paper, we generalize the proximal point algorithm to complete CAT(0) spaces and show that the sequence generated by the proximal point algorithm $w$-converges to a zero of the maximal monotone operator. Also, we prove that if $f: Xrightarrow ]-infty, +infty]$ is a proper, convex and lower semicontinuous function on the complete CAT(0) space $X$, then the proximal...
Let Ω ⊂ R be a bounded open set. Given 2 ≤ m ≤ n, we construct a convex function φ : Ω → R whose gradient f = ∇φ is a Hölder continuous homeomorphism, f is the identity on ∂Ω, the derivative Df has rank m − 1 a.e. in Ω and Df is in the weak L space L. The proof is based on convex integration and staircase laminates.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید