نتایج جستجو برای: lithium doping
تعداد نتایج: 75119 فیلتر نتایج به سال:
The provision of efficient electron and ion transport is a critical issue in an exciting new group of materials based on lithium metal phosphates that are important as cathodes for lithium-ion batteries. Much interest centres on olivine-type LiFePO(4), the most prominent member of this family. Whereas the one-dimensional lithium-ion mobility in this framework is high, the electronically insulat...
By virtue of its excellent bioactivity and osteoconductivity, calcium phosphate cement (CPC) has been applied extensively in bone engineering. Doping a trace element into CPC can change physical characteristics and enhance osteogenesis. The trace element lithium has been demonstrated to stimulate the proliferation and differentiation of osteoblasts. We investigated the fracture-healing effect o...
Orthorhombic Li x FePO 4 (0 ≤ x ≤ 1) system has attracted much attention for its application as a high power cathode material in lithium ion batteries. [ 1 ] Although the performance of this material has been greatly improved by cation doping, surface coating and size reduction, [ 2–4 ] the fundamental phase transformation mechanisms accompanying lithiation/delithiation are still controversial....
An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophen...
The Front Cover shows the remarkable effects of fluorine doping on layered structure single-crystal LiNi0.6Co0.2Mn0.2O2 cathode material. can tune lithium layer spacing and transition metal spacing, significantly improve electrochemical performance More information be found in Article X. Huang et al.
Rational design of active electrode materials is important for the development of advanced lithium and post-lithium batteries. Ab initio modeling can provide mechanistic understanding of the performance of prospective materials and guide design. We review our recent comparative ab initio studies of lithium, sodium, potassium, magnesium, and aluminum interactions with different phases of several...
Study of Gd-doping level on the electrochemical performance of Li4Ti5O12. Greatly enhanced rate capability and retention of Gd-doped Li4Ti5O12 revealed. Analysis designed to determine the position and occupancy of Gd in Li4Ti5O12. Computation describes the fundamental mechanism of performance
The effects of Li doping in MgH 2 on H-diffusion process are investigated, using first-principles calculations. We have identified two key effects: (1) The concentration of H vacancy in the þ1 charge state ðV þ1 H Þ can increase by several orders of magnitude upon Li doping, which significantly increases the vacancy mediated H diffusion rate. It is caused by the preferred charge states of subst...
We show that, with appropriate doping, the ethersulfone-based electrolytes that we earlier reported to have 5.6 V electrochemical windows but poor cycling performance in Li-ion cells, can succeed. We show they can be used to make cells that, at C/20 charge/discharge rates, have cycling performance equal to those with the standard LiPF6-carbonate electrolytes. A difference in performance that de...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید