نتایج جستجو برای: linde f k

تعداد نتایج: 638764  

Journal: :Journal of Mathematical Analysis and Applications 1974

Journal: :communication in combinatorics and optimization 0
n. dehgardi sirjan university of technology, sirjan 78137, iran

‎for any integer $kge 1$‎, ‎a minus $k$-dominating function is a‎ ‎function $f‎ : ‎v (g)rightarrow {-1,0‎, ‎1}$ satisfying $sum_{win‎‎n[v]} f(w)ge k$ for every $vin v(g)$‎, ‎where $n(v) ={u in‎‎v(g)mid uvin e(g)}$ and $n[v] =n(v)cup {v}$‎. ‎the minimum of‎‎the values of $sum_{vin v(g)}f(v)$‎, ‎taken over all minus‎‎$k$-dominating functions $f$‎, ‎is called the minus $k$-domination‎‎number and i...

Journal: :Journal of the American College of Cardiology 2006
Jeroen J Bax Bernard De Bruyne Anselm K Gitt Steen Kristensen Cecilia Linde Don Poldermans Fausto J Pinto Piotr Ponikowski Bernard D Prendergast Enrico Abagiti-Rosei Sidney C Smith Karin R Sipido Ernst E van der Wall Michal Tendera Michel Komajda

eroen J. Bax, MD, PHD,* Bernard De Bruyne, MD, PHD,† Anselm K. Gitt, MD,‡ teen Kristensen, MD, DMSC, Cecilia Linde, MD, PHD,¶ Don Poldermans, MD, PHD,# austo J. Pinto, MD, PHD,** Piotr Ponikowski, MD, PHD,†† Bernard D. Prendergast, MD,‡‡ nrico Abagiti-Rosei, MD,§§ Sidney C. Smith, JR, MD, Karin R. Sipido, MD, PHD,¶¶ rnst E. van der Wall, MD, PHD,* Michal Tendera, MD, ESC President,## Michel Kom...

1999
Kenneth G. Powell Philip L. Roe Timur J. Linde Tamas I. Gombosi Darren L. De Zeeuw

A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics Kenneth G. Powell,∗ Philip L. Roe,∗ Timur J. Linde,∗ Tamas I. Gombosi,† and Darren L. De Zeeuw† ∗W. M. Keck Foundation CFD Laboratory, Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109-2140; and †Space Physics Research Laboratory, Department of Atmospheric, Oceanic and Space Sciences, Universit...

Journal: :فیزیک زمین و فضا 0
مریم خاکی فیروز کارشناس ارشد پردازش داده های لرزه ای، شرکت کدکم حمیدرضا سیاهکوهی دانشیار، گروه فیزیک زمین، مؤسسة ژئوفیزیک دانشگاه تهران

the stolt (f-k) migration algorithm is a direct (i.e. non-recursive) fourier-domain technique based on a change of variables (or equivalently, a mapping) that converts the input spectrum to the output spectrum. the algorithm is simple and efficient but limited to constant velocity. a v(z)(f-k) migration method, capable of very high accuracy for vertical variations of velocity, can be formulated...

Journal: :journal of algorithms and computation 0
r. ponraj department of mathematics, sri paramakalyani college,alwarkurichi-627412, india rajpal singh research scholar, department of mathematics manonmaniam sundaranar university, tirunelveli-627012, india s. sathish narayanan department of mathematics, sri paramakalyani college,alwarkurichi-627412, india

let g be a (p, q) graph. let f : v (g) → {1, 2, . . . , k} be a map. for each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of g if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....

Journal: :journal of algorithms and computation 0
r. ponraj department of mathematics, sri paramakalyani college,alwarkurichi-627 412, india rajpal singh research scholar, department of mathematics, manonmaniam sundaranar university, tirunelveli-627012, india s. sathish narayanan department of mathematics, sri paramakalyani college,alwarkurichi-627 412, india a. m. s. ramasamy department of mathematics, vel tech dr.r.r & dr.s.r technical university, chennai-600002, india

let g be a (p, q) graph. let f : v (g) → {1, 2, . . . , k} be a map. for each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of g if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....

N. Ghobadipour

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

In this paper the combinatorial problem of determining the number of minimal path sets of a consecutive-k-out-of-n: F system is considered. For the cases where k = 2, 3 the explicit formulae are given and for k ≥ 4 a recursive relation is obtained. Direct computation for determining the number of minimal path sets of a consecutive-k-out-of-n: F system for k ≥ 4 remains a difficult task. ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید