In this work, we study the following conformable fractional Sturm--Liouville
 problem
 \[
 l[y]=-T_{\alpha }(p(t)T_{\alpha }y(t))+q(t)y(t),
 \]
 where $t\in \lbrack 0,\infty ),$ real-valued functions $p$ and $q$
 satisfy conditions:
 \begin{array}{cc}
 (i) & q\in L_{\alpha }^{2}[0,\infty ), \\ 
 (ii) p\ \text{is\ absolutely\ continuous\ on}\ [0,\...