نتایج جستجو برای: heat propagation
تعداد نتایج: 307637 فیلتر نتایج به سال:
The propagation of a heat pulse in a single crystal and across grain boundaries (GBs) is simulated using a concurrent atomistic-continuum method furnished with a coherent phonon pulse model. With a heat pulse constructed based on a Bose-Einstein distribution of phonons, this work has reproduced the phenomenon of phonon focusing in single and polycrystalline materials. Simulation results provide...
The hyperbolic heat conduction equation (HHCE), which acknowledges the finite speed of heat propagation, is based on microscopic evidence from the kinetic theory and statistical mechanics. However, it was argued that the HHCE could violate the second law of thermodynamics. This paper shows that a HHCE like equation (RHCE) can be derived directly from the theory of relativity, as a direct conseq...
Abstract The optimized stellarator Wendelstein 7-X (W7-X) is designed to have an approximately quasi-isodynamic magnetic configuration with reduced neoclassical transport in comparison a classical stellarator, and turbulent expected be significant source of anomalous heat across the plasma minor radius. ion temperature gradient driven mode trapped electron (TEM) are thought responsible for ion-...
Entropy generation is commonly applied to describe the evolution of irreversible processes, such as heat transfer and turbulence. These are both dominating phenomena in fire propagation. In this paper, entropy generation analysis is applied to a grassland fire event, with the aim of finding possible links between entropy generation and propagation directions. The ultimate goal of such analysis ...
In order to account for low temperature heat propagation phenomena in crystals of sodium fluoride and bismuth, we employ a thermodynamic model for rigid materials involving a vector-field internal state variable. The model is either wavelike or diffusive, depending on the temperature regime considered.
In this Letter, we revisit the Maxwell-Cattaneo law of finite-speed heat conduction. We point out that the usual form of this law, which involves a partial time derivative, leads to a paradoxical result if the body is in motion. We then show that by using the material derivative of the thermal flux, in lieu of the local one, the paradox is completely resolved. Specifically, that using the mater...
We consider phase transitions in solids due to heat propagating through crystalline materials at low temperatures. These are considered in a steady state context where, at the transition temperature, the specific heat becomes singular and the heat conductivity has a maximum. Several consequences are found for the heat capacity having finite or infinite jump discontinuities.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید