نتایج جستجو برای: haloalkane dehalogenase

تعداد نتایج: 829  

Journal: :Biochemistry 2005
Jan Kmunícek Kamila Hynková Tomás Jedlicka Yuji Nagata Ana Negri Federico Gago Rebecca C Wade Jirí Damborský

Haloalkane dehalogenases are microbial enzymes that cleave a carbon-halogen bond in halogenated compounds. The haloalkane dehalogenase LinB, isolated from Sphingomonas paucimobilis UT26, is a broad-specificity enzyme. Fifty-five halogenated aliphatic and cyclic hydrocarbons were tested for dehalogenation with the LinB enzyme. The compounds for testing were systematically selected using a statis...

Journal: :Acta crystallographica. Section D, Biological crystallography 2014
Maryna Lahoda Jeroen R Mesters Alena Stsiapanava Radka Chaloupkova Michal Kuty Jiri Damborsky Ivana Kuta Smatanova

Haloalkane dehalogenases catalyze the hydrolytic cleavage of carbon-halogen bonds, which is a key step in the aerobic mineralization of many environmental pollutants. One important pollutant is the toxic and anthropogenic compound 1,2,3-trichloropropane (TCP). Rational design was combined with saturation mutagenesis to obtain the haloalkane dehalogenase variant DhaA31, which displays an increas...

Journal: :Biochemistry 2003
Victor A Streltsov Zbynek Prokop Jirí Damborský Yuji Nagata Aaron Oakley Matthew C J Wilce

The haloalkane dehalogenases are detoxifying enzymes that convert a broad range of halogenated substrates to the corresponding alcohols. Complete crystal structures of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB), and complexes of LinB with 1,2-propanediol/1-bromopropane-2-ol and 2-bromo-2-propene-1-ol, products of debromination of 1,2-dibromopropane and 2,3-dibromopropene...

2014
Anzhang Li Zongze Shao

Recently, we found that Alcanivorax bacteria from various marine environments were capable of degrading halogenated alkanes. Genome sequencing of A. dieselolei B-5 revealed two putative haloalkane dehalogenase (HLD) genes, which were supposed to be involved in degradation of halogenated compounds. In this report, we confirm for the first time that the Alcanivorax bacterium encodes a truly funct...

Journal: :The Journal of biological chemistry 1994
F Pries A J van den Wijngaard R Bos M Pentenga D B Janssen

The first step in the utilization of the xenobiotic chlorinated hydrocarbon 1,2-dichloroethane by Xanthobacter autotrophicus is catalyzed by haloalkane dehalogenase (Dh1A). The enzyme hydrolyses 1-haloalkanes to the corresponding alcohols. This allows the organism to grow also on short-chain (C2-C4) 1-chloro-n-alkanes. We have expressed Dh1A in a strain of Pseudomonas that grows on long-chain a...

Journal: :Nucleic acids research 2002
Mariël G Pikkemaat Dick B Janssen

Directed evolution techniques allow us to genuinely mimic molecular evolution in vitro. To enhance this imitation of natural evolutionary processes on a laboratory scale in even more detail, we developed an in vitro method for the generation of random deletions and repeats. The pairwise fusion of two fragments of the same gene that are truncated by exonuclease BAL-31 either at the 3' or 5' side...

Journal: :Methods in molecular biology 2003
Huimin Zhao

1. Introduction Microbial hydrolytic haloalkane dehalogenases catalyze the cleavage of halogen-carbon bonds of a variety of aliphatic halogenated compounds, including a broad range of chlorinated (C 2 –C 6) and brominated (C 2 –C 8) alkanes, with water as the sole co-substrate, resulting in the production of halide ions, protons, and alcohols (1,2). Based primarily on substrate specificity and ...

Journal: :Protein engineering 1998
J Damborský

Quantitative structure-function relationships (QSFR) and quantitative structure-stability relationships (QSSR) analyses are described here. The objective of these analyses is to investigate and quantitatively describe the effect of the changes in structure of protein on its function or stability. During the analysis, the structural and physico-chemical properties of the amino acid residues are ...

Journal: :Biochemistry 1996
J P Schanstra I S Ridder G J Heimeriks R Rink G J Poelarends K H Kalk B W Dijkstra D B Janssen

Conversion of halogenated aliphatics by haloalkane dehalogenase proceeds via the formation of a covalent alkyl-enzyme intermediate which is subsequently hydrolyzed by water. In the wild type enzyme, the slowest step for both 1,2-dichloroethane and 1,2-dibromoethane conversion is a unimolecular enzyme isomerization preceding rapid halide dissociation. Phenylalanine 172 is located in a helix-loop...

2015
Diego Javier Jiménez Francisco Dini-Andreote Júlia Ronzella Ottoni Valéria Maia de Oliveira Jan Dirk van Elsas Fernando Dini Andreote

The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unas...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید