نتایج جستجو برای: generalized hyers ulam stability
تعداد نتایج: 461475 فیلتر نتایج به سال:
In this paper, we introduce a high dimensional system of singular fractional differential equations. Using Schauder fixed point theorem, prove an existence result. We also investigate the uniqueness solution using Banach contraction principle. Moreover, study Ulam-Hyers stability and generalized-Ulam-Hyers solutions. Some illustrative examples are presented.
We study the generalized Ulam-Hyers stability, the well-posedness, and the limit shadowing of the fixed point problem for new type of generalized contraction mapping, the so-called α-β-contraction mapping. Our results in this paper are generalized and unify several results in the literature as the result of Geraghty (1973) and the Banach contraction principle.
In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.
In this paper, we establish the Hyers--Ulam--Rassias stability and the Hyers--Ulam stability of impulsive Volterra integral equation by using a fixed point method.
the main goal of this paper is the study of the generalized hyers-ulam stability of the following functionalequation f (2x y) f (2x y) (n 1)(n 2)(n 3) f ( y) 2n2 f (x y) f (x y) 6 f (x) where n 1,2,3,4 , in non–archimedean spaces, by using direct and fixed point methods.
in this paper, we use the denition of fuzzy normed spaces givenby bag and samanta and the behaviors of solutions of the additive functionalequation are described. the hyers-ulam stability problem of this equationis discussed and theorems concerning the hyers-ulam-rassias stability of theequation are proved on fuzzy normed linear space.
One of the interesting questions concerning the stability problems of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to the solution of the given functional equation? Such an idea was suggested in 1940 by Ulam 1 . The case of approximately additive mappings was solved by Hyers 2 . In 1978, Rassias 3 generalized Hye...
The generalized Hyers–Ulam–Rassias stability of adjointable mappings on Hilbert C∗-modules are investigated. As a result, we get a solution for stability of the equation f(x)∗y = xg(y)∗ in the context of C∗-algebras. ∗2000 Mathematics Subject Classification. Primary 39B82, secondary 46L08, 47B48, 39B52 46L05, 16Wxx.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید