نتایج جستجو برای: fuzzy trapezoidals rule
تعداد نتایج: 238468 فیلتر نتایج به سال:
A fuzzy rule-based classification system (FRBCS) is one of the most popular approaches used in pattern classification problems. One advantage of a fuzzy rule-based system is its interpretability. However, we're faced with some challenges when generating the rule-base. In high dimensional problems, we can not generate every possible rule with respect to all antecedent combinations. In this paper...
Abstract. This paper presents the synthesis and analysis of the enhanced predictive fuzzy Hammerstein model of the water tank system. Fuzzy Hammerstein model was compared with three other fuzzy models: the first was synthesized using Mamdani type rule base, the second – Takagi-Sugeno type rule base and the third – composed of Mamdani and Takagi-Sugeno rule bases. The synthesized model is invert...
In this contribution we carry out an analysis of the Fuzzy Reasoning Methods for Fuzzy Rule Based Classification Systems in the framework of balanced and imbalanced data-sets with different degrees of imbalance. We analyze the behaviour of the Fuzzy Rule Based Classification Systems searching for the best type of Fuzzy Reasoning Method in each case, also studying the cooperation of some pre-pro...
The Kóczy-Hirota Fuzzy Interpolation (“KH” method, Kóczy and Hirota, 1991) is the first method adapting the declarative way of fuzzy function definition and the related “fuzzy dot” rule representation by introducing the concept of Fuzzy Rule Interpolation (FRI). The original KH method had many followers. Most of the FRI methods have difficulties in freely defining the relation of the observatio...
Fuzzy Classifiers are an powerful class of fuzzy systems. Evolving fuzzy classifiers from numerical data has assumed lot of remarks in the recent past. This paper proposes a method of evolving fuzzy classifiers using a three step technique. In the first step, a modified Fuzzy C–Means Clustering technique is applied to generate membership functions. In the next step, rule base are generated usin...
Genetic fuzzy rule selection is a two-phase classification rule mining method. First a large number of candidate fuzzy rules are generated by an association rule mining technique. Then only a small number of generated rules are selected by a genetic algorithm. We have already proposed an idea of parallel distributed implementation of genetic fuzzy rule selection. In this paper, we examine its c...
Fuzzy rule interpolation forms an important approach for performing inference with systems comprising sparse rule bases. Even when a given observation has no overlap with the antecedent values of any existing rules, fuzzy rule interpolation may still derive a useful conclusion. Unfortunately, very little of the existing work on fuzzy rule interpolation can conjunctively handle more than one for...
If the given fact for an antecedent in a fuzzy production rule (FPR) does not match exactly with the antecedent of the rule, the consequent can still be drawn by technique such as fuzzy reasoning. Many existing fuzzy reasoning methods are based on Zadeh’s Compositional rule of Inference (CRI) which requires setting up a fuzzy relation between the antecedent and the consequent part. There are so...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of similar fuzzy sets that represent compatible concepts. This results in an unnecessarily complex and less transparent linguistic description of the system. By using a measure of similarity, a rule base simplification method is proposed that reduces the number of fuzzy sets in the model. Similar fuzz...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید