نتایج جستجو برای: fuzzy feed forward neural network ffnn

تعداد نتایج: 1062882  

Journal: :Sustainability 2023

Proper analysis of building energy performance requires selecting appropriate models for handling complicated calculations. Machine learning has recently emerged as a promising effective solution solving this problem. The present study proposes novel integrative machine model predicting two parameters residential buildings, namely annual thermal demand (DThE) and weighted average discomfort deg...

Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...

Journal: :desert 2015
mohammad tahmoures ali reza moghadamnia mohsen naghiloo

modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. thisstudy made us of adaptive neuro-fuzzy ...

Journal: :Applied sciences 2021

This work addresses an efficient neural network (NN) representation for the phase-field modeling of isotropic brittle fracture. In recent years, data-driven approaches, such as networks, have become active research field in mechanics. this contribution, deep networks—in particular, feed-forward (FFNN)—are utilized directly development failure model. The verification and generalization trained m...

Introduction: Acute appendicitis is one of the most common causes of emergency surgery especially in children. Proper and on-time diagnosis may decrease the unwanted complications. In despite of diagnostic methods, a significant number of patients yet and up with negative laparotomies. The aim of this study was to assess the role of artificial neural networks in diagnosis of acute appendicitis ...

2013
L. Karthikeyan Nagesh Kumar Didier Graillot Shishir Gaur

Artificial Neural Networks (ANNs) have been found to be a robust tool to model many non-linear hydrological processes. The present study aims at evaluating the performance of ANN in simulating and predicting ground water levels in the uplands of a tropical coastal riparian wetland. The study involves comparison of two network architectures, Feed Forward Neural Network (FFNN) and Recurrent Neura...

Journal: :Computers & OR 1996
Antonie Stam Minghe Sun Marc Haines

In this paper, we introduce two artificial neural network formulations that can be used to predict the preference ratings from the pairwise comparison matrices of the Analytic Hierarchy Process (AHP). First, we introduce a modified Hopfield network that can be used to exactly determine the vector of preference ratings associated with a positive reciprocal comparison matrix. The dynamics of this...

2017
SHAILAJA ARJUN PATIL P. J. DEORE

Video-based face recognition is a very challenging problem as there is a variation in resolution, illumination, pose, facial expressions and occlusion. In this paper, we have presented an approach for resolution variation video-based face recognition system using the combination of local binary pattern (LBP), principal component analysis (PCA) and feed forward neural network (FFNN). We used, st...

1997
Andreas Hadjiprocopis

Feed Forward Neural Networks (FFNNs) are computational techniques inspired by the physiology of the brain and used in the approximation of general mappings from one nite dimensional space to another. They present a practical application of the theoretical resolution of Hilbert's 13 th problem by Kolmogorov and Lorenz, and have been used with success in a variety of applications. However, as the...

Journal: :Proceedings in applied mathematics & mechanics 2021

The present study applies two different machine learning (ML) algorithms to predict the stress-strain mapping for non-linear behaviour of thermoplastic materials: a Long Short-Term Memory (LSTM) algorithm and Feed-Forward Neural Network (FFNN). approach this work requires generation curve specific material parameters. training data are obtained from von Mises law Ramberg-Osgood equation. four c...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید