نتایج جستجو برای: fuzzy data mining
تعداد نتایج: 2515323 فیلتر نتایج به سال:
Many researchers in database and machine learning fields are primarily interested in data mining because it offers opportunities to discover useful information and important relevant patterns in large databases. Most previous studies have shown how binary valued transaction data may be handled. Transaction data in real-world applications usually consist of quantitative values, so designing a so...
The increasing bulk of data generation in industrial and scientific applications has fostered practitioners’ interest in mining large amounts of unlabeled data in the form of continuous, high speed, and time-changing streams of information. An appealing field is association stream mining, which models dynamically complex domains via rules without assuming any a priori structure. Different from ...
Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a ...
− Spatial data mining knows a more and more important interest. Fundamental processes of spatial data mining are in particular clustering and structural patterns detection. These processes are influenced strongly by the concept of proximity or neighborhood. This paper introduces some structures to the construction of a spatial data mining integrating fuzzy structural primitives and propose to o...
Tools and techniques that have been developed during the last 40 years in the field of fuzzy set theory (FST) have been applied quite successfully in a variety of application areas. A prominent example of the practical usefulness of corresponding techniques is fuzzy control, where the idea is to represent the input-output behaviour of a controller (of a technical system) in terms of fuzzy rules...
Transactions with quantitative values are commonly seen in real-world applications. Fuzzy mining algorithms have thus been developed recently to induce linguistic knowledge from quantitative databases. In fuzzy data mining, the membership functions have a critical influence on the final mining results. How to effectively decide the membership functions in fuzzy data mining thus becomes very imp...
Fuzzy data mining is used to extract fuzzy knowledge from linguistic or quantitative data. It is an extension of traditional data mining and the derived knowledge is relatively meaningful to human beings. In the past, we proposed a mining algorithm to find suitable membership functions for fuzzy association rules based on ant colony systems. In that approach, precision was limited by the use of...
In order to overcome the difficulty of cognitive and mining for large-scale multi-relationship system, we take the advantages of intelligent computing of FCM (Fuzzy Cognitive Map) and update the traditional FCM to MRFCM (Multi-Relationship based Fuzzy Cognitive Map) for multi-relationship data mining. The state mining of hyper-node and multi-relationship inference of MRFCM are studied and imple...
Data Mining(also known as Knowledge Discovery) is defined as the non-trivial extraction of implicit, previously unknown, and potentially useful information from data. It includes not only methods for extracting information from the given data, but also visualizing the information. Formal Concept Analysis(FCA) is one of Data mining research fields, and it has been applied to a number of areas su...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید