نتایج جستجو برای: fluorescent in situ hybridization
تعداد نتایج: 16994172 فیلتر نتایج به سال:
There is a discrepancy in telomere length as measured by signal intensity of telomere restriction fragments on gels and fluorescence in situ hybridization analysis. This difference has been ascribed to the X-region, a segment of subtelomeric DNA that is resistant to being cut by restriction enzymes. To explore the nature of this region, we analyzed the digestibility of an artificial seeded telo...
We sampled 11 natural populations of the grasshopper Xyleus discoideus angulatus in Northeastern Brazil to analyze B chromosome frequency and meiotic behavior. We observed a single large B chromosome, resembling the X chromosome, in 29 of the 402 specimens. Eight of the 11 populations had B chromosomes, with a rather broad geographical distribution, suggesting that this is an ancient polymorphi...
The SRY gene is a single-copy, male-specific gene, located on the Y chromosome in most mammals. However, recently we have described the presence of multiple polymorphic copies of this gene in both males and females of the vole species Microtus cabrerae. Here, we present the chromosomal localization of SRY gene copies in this species by fluorescent in situ hybridization (FISH). This technique lo...
Fluorescence in situ hybridization (FISH) analysis is an FDA-approved, urine-based marker that assists in diagnosis and surveillance of invasive urothelial cancer. This article provides an overview and case study demonstrating the clinical use of this analysis. As a systematic review of non-randomized and randomized clinical trials, this article provides Level I evidence.
Phenotypic susceptibility testing for clarithromycin by E-test and disk diffusion of 109 cultured Helicobacter pylori isolates was compared with the genotypic susceptibility determination by fluorescent in situ hybridization (FISH). No discrepancies were found between these three methods. However, FISH has the advantage of providing results after 3 h.
Recently, several chromosome banding techniques based on fluorescence in situ hybridization (FISH) have been developed for the human and the mouse genome. In contrast to the standard chromosome banding techniques presently used, giving a protein-related banding pattern, those FISH techniques are DNA-specific. Currently the FISH banding methods are still under development and no high resolution ...
Here we describe a modified version of a double fluorescence in situ hybridization (dFISH) method optimized for detecting two mRNAs of interest in fresh frozen brain sections. Our group has successfully used this approach to study gene co-regulation. More specifically, we have used this dFISH method to explore the anatomical organization, neurochemical properties, and the impact of sensory expe...
Fluorescence in situ hybridization (FISH) of neural activity-regulated, immediate-early gene (IEG) expression provides a method of functional brain imaging with cellular resolution. This enables the identification, in one brain, of which specific principal neurons were active during each of two distinct behavioral epochs. The unprecedented potential of this differential method for large-scale a...
High-resolution visualization of short non-repetitive DNA in situ in the nuclear genome is essential for studying looping interactions and chromatin organization in single cells. Recent advances in fluorescence in situ hybridization (FISH) using Oligopaint probes have enabled super-resolution imaging of genomic domains with a resolution limit of 4.9 kb. To target shorter elements, we developed ...
One of the central topics in environmental bioremediation research is to identify microorganisms that are capable of degrading the contaminants of interest. Here we report application of combined microautoradiography (MAR) and fluorescence in situ hybridization (FISH). The method has previously been used in a number of systems; however, here we demonstrate its feasibility in studying the degrad...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید