نتایج جستجو برای: facial bioelectric signals
تعداد نتایج: 249761 فیلتر نتایج به سال:
Designed by biological and social evolutionary pressures, facial expressions of emotion comprise specific facial movements to support a near-optimal system of signaling and decoding. Although highly dynamical, little is known about the form and function of facial expression temporal dynamics. Do facial expressions transmit diagnostic signals simultaneously to optimize categorization of the six ...
Natural endogenous voltage gradients not only predict and correlate with growth and development but also drive wound healing and regeneration processes. This review summarizes the existing literature for the nature, sources, and transmission of information-bearing bioelectric signals involved in controlling wound healing and regeneration in animals, humans, and plants. It emerges that some bioe...
The conventional functional MRI (fMRI) map offers information indirectly about localized changes in neuronal activity because it reflects changes in blood oxygenation, not actual neuronal activity. To provide a neurophysiological basis of fMRI, researchers have used electrophysiology to show correlations of fMRI and electric signals. However, quantitative interpretation of the degree to which n...
This article examines the human face as a transmitter of expression signals and the brain as a decoder of these expression signals. If the face has evolved to optimize transmission of such signals, the basic facial expressions should have minimal overlap in their information. If the brain has evolved to optimize categorization of expressions, it should be efficient with the information availabl...
Navigating our complex social world requires effective processing of subtle emotional signals, such as those conveyed by facial expressions. Failure to do so may underlie some of the disabling social-emotional deficits common in a range of neuropsychiatric and neurological conditions. Prefrontal cortex (PFC) has long been implicated in these processes, but the particular contributions of subreg...
Abstract The reliable function in vivo of self‐powered implantable bioelectric devices (iBEDs) requires biocompatible, seamless, effective interactions with biological tissues. Herein, an tissue‐adhesive piezoelectric soft sensor (TPSS), which the converts biomechanical signals into electrical signals, and adhesive hydrogel (AH) strengthens this conversion by seamlessly adhering on wet curvilin...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید