نتایج جستجو برای: euclidean graph
تعداد نتایج: 220295 فیلتر نتایج به سال:
The contact graph of an arbitrary finite packing of unit balls in Euclidean 3-space is the (simple) graph whose vertices correspond to the packing elements and whose two vertices are connected by an edge if the corresponding two packing elements touch each other. One of the most basic questions on contact graphs is to find the maximum number of edges that a contact graph of a packing of n unit ...
When attempting to develop wavelet transforms for graphs and networks, some researchers have used graph Laplacian eigenvalues and eigenvectors in place of the frequencies and complex exponentials in the Fourier theory for regular lattices in the Euclidean domains. This viewpoint, however, has a fundamental flaw: on a general graph, the Laplacian eigenvalues cannot be interpreted as the frequenc...
The simplest model of a wireless network graph is the Unit Disk Graph (UDG): an edge exists in UDG if the Euclidean distance between its endpoints is ≤ 1. The problem of constructing planar spanners of Unit Disk Graphs with respect to the Euclidean distance has received considerable attention from researchers in computational geometry and ad-hoc wireless networks. In this paper, we present an a...
Consider an n-point metric space M = (V, δ), and a transmission range assignment r : V → R that maps each point v ∈ V to the disk of radius r(v) around it. The symmetric disk graph (henceforth, SDG) that corresponds to M and r is the undirected graph over V whose edge set includes an edge (u, v) if both r(u) and r(v) are no smaller than δ(u, v). SDGs are often used to model wireless communicati...
We present a method to find outliers using ‘commute distance’ computed from a random walk on graph. Unlike Euclidean distance, commute distance between two nodes captures both the distance between them and their local neighborhood densities. Indeed commute distance is the Euclidean distance in the space spanned by eigenvectors of the graph Laplacian matrix. We show by analysis and experiments t...
Graph neural network (GNN) has shown superior performance in dealing with structured graphs, which attracted considerable research attention recently. Most of the existing GNNs are designed Euclidean spaces; however, real-world spatial data can be non-Euclidean surfaces (e.g., hyperbolic spaces). For example, biologists may inspect geometric shape a protein surface to determine its interaction ...
There are several results available in the literature dealing with efficient construction of t-spanners for a given set S of n points in Rd. t-spanners are Euclidean graphs in which distances between vertices in G are at most t times the Euclidean distances between them; in other words, distances in G are “stretched” by a factor of at most t. We consider the interesting dual problem: given a Eu...
Distance geometry problems arise from the need to position entities in the Euclidean K-space given some of their respective distances. Entities may be atoms (molecular distance geometry), wireless sensors (sensor network localization), or abstract vertices of a graph (graph drawing). In the context of molecular distance geometry, the distances are usually known because of chemical properties an...
abstract. topological indices are the numerical value associated with chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity or biological activity. graph theory is a delightful playground for the exploration of proof techniques in discrete mathematics and its results have applications in many areas of sciences. a graph is a ...
Given a real-valued continuous function defined on n-dimensional Euclidean space, we construct a Khalimsky-continuous integer-valued approximation. From a geometrical point of view, this digitization takes a hypersurface that is the graph of a function and produces a digital hypersurface—the graph of the digitized function.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید