We prove that if $$G(R)=G_\pi (\Phi ,R)$$ $$(E(R)=E_{\pi }(\Phi , R))$$ is an (elementary) Chevalley group of rank $$> 1$$ R a local ring (with $$\frac{1}{2}$$ for the root systems $${{\textbf{A}}}_2, {{\textbf{B}}}_l, {{\textbf{C}}}_l, {{\textbf{F}}}_4, {{\textbf{G}}}_2$$ and with $$\frac{1}{3}$$ $${{\textbf{G}}}_{2})$$ then G(R) (or (E(R)) regularly bi-interpretable R. As consequence this the...