Let G be a finite graph allowing loops, having no multiple edge and no isolated vertex. We associate G with the edge polytope PG and the toric ideal IG. By classifying graphs whose edge polytope is simple, it is proved that the toric ideals IG of G possesses a quadratic Gröbner basis if the edge polytope PG of G is simple. It is also shown that, for a finite graph G, the edge polytope is simple...