نتایج جستجو برای: discrete fractional sturm liouville problem
تعداد نتایج: 1064604 فیلتر نتایج به سال:
in this manuscript, we study the inverse problem for non self-adjoint sturm--liouville operator $-d^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. by defining a new hilbert space and using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...
*Correspondence: [email protected] Department of Mathematics and Physical Sciences, Prince Sultan University, P.O. Box 66833, Riyadh, 11586, Saudi Arabia Abstract In this article, we extend fractional calculus with nonsingular exponential kernels, initiated recently by Caputo and Fabrizio, to higher order. The extension is given to both left and right fractional derivatives and integrals. ...
In this paper, we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated, self-adjoint boundary conditions and we show that such SLP have finite spectrum. Also for a given matrix eigenvalue problem $HX=lambda VX$, where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix, we find a sixth order boundary value problem of Atkin...
Eigenvalues in the essential spectrum of a weighted Sturm-Liouville operator are studied under the assumption that the weight function has one turning point. An abstract approach to the problem is given via a functional model for indefinite Sturm-Liouville operators. Algebraic multiplicities of eigenvalues are obtained. Also, operators with finite singular critical points are considered. MSC-cl...
in this paper, we investigate infinite product representation of the solution of a sturm-liouville equation with an indefinite weight function which has two zeros and/or singularitiesin a finite interval. first, by using of the asymptotic estimates provided in [w. eberhard, g.freiling, k. wilcken-stoeber, indefinite eigenvalue problems with several singular pointsand turning points, math. nachr...
Oscillation and nonoscillation properties of second order Sturm–Liouville dynamic equations on time scales attracted much interest. These equations include, as special cases, second order self-adjoint differential equations as well as second order Sturm–Liouville difference equations. In this paper we consider a given (homogeneous) equation and a corresponding equation with forcing term. We giv...
An inverse nodal problem has first been studied for the Sturm-Liouville equation with one turning point. The asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated and an asymptotic of the nodal points is obtained. For this problem, we give a reconstruction formula for the potential function. Furthermore, numerical examples have been established a...
Riesz potentials also called Riesz fractional derivatives and their Hilbert transforms are computed for the Korteweg-de Vries soliton. They are expressed in terms of the full-range Hurwitz Zeta functions ζ s, a and ζ− s, a . It is proved that these Riesz potentials and their Hilbert transforms are linearly independent solutions of a Sturm-Liouville problem. Various new properties are establishe...
In one-dimensional quantum mechanics, or the Sturm-Liouville theory, Crum’s theorem describes the relationship between the original and the associated Hamiltonian systems, which are iso-spectral except for the lowest energy state. Its counterpart in ‘discrete’ quantum mechanics is formulated algebraically, elucidating the basic structure of the discrete quantum mechanics, whose Schrödinger equa...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید