we have the crisp vector → PQ= (y(1)−x(1),y(2)−x(2), . . . ,y(n)−x(n)) in a pseudo-fuzzy vector space Fn p (1)= {(a(1),a(2), . . . ,a(n))1∀(a(1),a(2), . . . ,a(n))∈Rn}. There is a one-to-one onto mapping P = (x(1),x(2), . . . ,x(n)) ↔ P̃ = (x(1),x(2), . . . , x)1. Therefore, for the crisp vector → PQ, we can define the fuzzy vector → P̃ Q̃= (y(1)− x(1),y(2)−x(2), . . . ,y(n)−x(n))1 = Q̃ P̃ . Let the...