نتایج جستجو برای: diffractive optical element
تعداد نتایج: 468384 فیلتر نتایج به سال:
The paper presents the polychromatic analysis of two diffractive optical elements with extended depth of focus: the linear axicon and the light sword optical element. Chromatic aberration produces axial displacement of the focal segment line. Thus, we explore the possibility of extending the focal depth of these elements to permit superposition of the chromatic foci. In the case of an axicon, w...
It was found that binary phase diffractive optical element (DOE) with non-π difference had higher diffraction efficiency and adjustable zero-order intensity than a 0-π one. However, existing design methods are all based on the simulated annealing algorithm thus computationally expensive. In this paper, simple efficient method using iterative Fourier transform (IFTA) is proposed. method, target ...
We present a procedure for the characterization and the linearization of the photoresist response to UV exposure for application to the gray-scale fabrication of diffractive optical elements. A simple and reliable model is presented as part of the characterization procedure. Application to the fabrication of surface-relief diffractive optical elements is presented, and theoretical predictions a...
The efficiency of conventional diffractive optical elements with échelette-type profiles drops rapidly as the illumination wavelength departs from the blaze wavelength. We use high dispersion of artificial materials to synthesize diffractive optical elements that are blazed over a broad spectral range (approximately 1 octave) or for two different wavelengths.
We have developed a super compact optical fluorescence spectrometer. Our innovative design combines advantages of guided wave planar optics and free-space microoptics. This innovation allows for miniaturization that is not achievable with pure planar or pure free-space optics. A prototype device has volume of its optical part below 1cm. The spectrometer covers 450nm-650nm spectral range, and pr...
Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to e...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید