نتایج جستجو برای: connected graph
تعداد نتایج: 300740 فیلتر نتایج به سال:
The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...
We introduce the notion of uniform number of a graph. The uniform number of a connected graph $G$ is the least cardinality of a nonempty subset $M$ of the vertex set of $G$ for which the function $f_M: M^crightarrow mathcal{P}(X) - {emptyset}$ defined as $f_M(x) = {D(x, y): y in M}$ is a constant function, where $D(x, y)$ is the detour distance between $x$ and $y$ in $G$ and $mathcal{P}(X)$ ...
in this paper an algorithm for computing the balaban and randic indices of any simple connected graph was introduced. also these indices were computed for ipr c80 fullerene isomers, zigzag nanotubes and graphene by gap program.
let $g$ be an $(n,m)$-graph. we say that $g$ has property $(ast)$if for every pair of its adjacent vertices $x$ and $y$, thereexists a vertex $z$, such that $z$ is not adjacentto either $x$ or $y$. if the graph $g$ has property $(ast)$, thenits complement $overline g$ is connected, has diameter 2, and itswiener index is equal to $binom{n}{2}+m$, i.e., the wiener indexis insensitive of any other...
let $r$ be a commutative ring with identity and $m$ an $r$-module. in this paper, we associate a graph to $m$, say ${gamma}({}_{r}m)$, such that when $m=r$, ${gamma}({}_{r}m)$ coincide with the zero-divisor graph of $r$. many well-known results by d.f. anderson and p.s. livingston have been generalized for ${gamma}({}_{r}m)$. we show that ${gamma}({}_{r}m)$ is connected with ${diam}({gamma}({}_...
for a simple connected graph $g$ with $n$-vertices having laplacian eigenvalues $mu_1$, $mu_2$, $dots$, $mu_{n-1}$, $mu_n=0$, and signless laplacian eigenvalues $q_1, q_2,dots, q_n$, the laplacian-energy-like invariant($lel$) and the incidence energy ($ie$) of a graph $g$ are respectively defined as $lel(g)=sum_{i=1}^{n-1}sqrt{mu_i}$ and $ie(g)=sum_{i=1}^{n}sqrt{q_i}$. in th...
In this note we show that the edge-connectivity λ(G × H) of the direct product of graphs G and H is bounded below by min{λ(G)|E(H)|, λ(H)|E(G)|, δ(G × H)} and above by min{2λ(G)|E(H)|, 2λ(H)|E(G)|, δ(G×H)} except in some special cases when G is a relatively small bipartite graph, or both graphs are bipartite. Several upper bounds on the vertex-connectivity of the direct product of graphs are al...
general formulas are obtained for the vertex padmakar-ivan index (piv) of tetrathiafulvalene(ttf) dendrimer, whereby ttf units we are employed as branching centers. the piv index isa wiener-szeged-like index developed very recently. this topological index is defined as thesummation of all sums of nu(e) and nv(e), over all edges of connected graph g.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید