Let {wi,j}1≤i≤n,1≤j≤s ⊂ Lm = F (X1, . . . , Xm)[ ∂ ∂X1 , . . . , ∂ ∂Xm ] be linear partial differential operators of orders with respect to ∂ ∂X1 , . . . , ∂ ∂Xm at most d. We prove an upper bound n(4mdmin{n, s}) (2(m−t)) on the leading coefficient of the Hilbert-Kolchin polynomial of the left Lm-module 〈{w1,j , . . . , wn,j}1≤j≤s〉 ⊂ L n m having the differential type t (also being equal to the...