let $i$ be an ideal in a regular local ring $(r,n)$, we will find bounds on the first and the last betti numbers of $(a,m)=(r/i,n/i)$. if $a$ is an artinian ring of the embedding codimension $h$, $i$ has the initial degree $t$ and $mu(m^t)=1$, we call $a$ a {it $t-$extended stretched local ring}. this class of local rings is a natural generalization of the class of stretched ...