نتایج جستجو برای: 1 and 2 wt nps fe
تعداد نتایج: 17518846 فیلتر نتایج به سال:
Herein we report the Fe3O4-oleate (Fe-OA) nanoparticles (NPs) incorporated poly (vinyl alcohol) (PVA), a series of highly flexible nanocomposites (Fe-OA-PVA) were prepared by solution casting technique. The fabricated with different weights per cent (0.25 wt. %, 0.5wt. and 0.75wt. 1wt. 2wt. respectively) Fe3O4-OA into PVA matrix. synthesized characterized using FTIR, UV–Vis, XRD, Contact angle,...
Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...
We report the synthesis, characterization and utilization of LAPONITE®-stabilized magnetic iron oxide nanoparticles (LAP-Fe3O4 NPs) as a high performance contrast agent for in vivo magnetic resonance (MR) detection of tumors. In this study, Fe3O4 NPs were synthesized by a facile controlled coprecipitation route in LAP solution, and the formed LAP-Fe3O4 NPs have great colloidal stability and abo...
AIMS Fe₃O₄ nanoparticles (NPs) have been known to provide a distinct image contrast effect for magnetic resonance imaging owing to their super paramagnetic properties on local magnetic fields. However, the possible effects of these NPs on membrane ion currents that concurrently induce local magnetic field perturbation remain unclear. METHODS We evaluated whether amine surface-modified Fe₃O₄ N...
The current research is about the synthesis of pure nickel sulfide, a series Te (0, 0.5, 1, 1.5, 2, and 3 wt.%)-doped NiS (Te@NiS) nanoparticles (NPs), S-g-C3N4 (10, 30, 50, 70, 80 wt.%)/Te@NiS nanocomposites (NCs), fabricated through hydrothermal route. XRD FTIR spectroscopic techniques demonstrated successful NPs NCs. SEM-EDX images confirmed flakelike structure elemental constituents materia...
Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to ...
In the present study, the extract of the plant of Oenothera biennis was used to green synthesis of silver nanoparticles (Ag NPs) as an environmentally friendly, simple and low cost method. And Additionally, TiO2/SiO2 was prepared via facile sol-gel method using starch as an important, naturally abundant organic polymer as an ideal support. The Ag NPs/TiO2/SiO<su...
Magnetic nanoparticles are the good choice for using in MRI as the contrast agent. Iron oxide particles such as magnetite (Fe3O4) or its oxidized form maghemite (γ-Fe2O3) are the most commonly employed in biomedical applications. In this study, we synthesized and optimized the preparation of chitosan manganese-ferrite nanoparticles (CMn-Fe nps) and evaluated its ability for the mice macrophage ...
Nanoparticle-based magnetic resonance imaging T2 negative agents are of great interest, and much effort is devoted to increasing cell-loading capability while maintaining low cytotoxicity. Herein, two classes of mixed-ligand protected magnetic-responsive, bimetallic gold/iron nanoparticles (Au/Fe NPs) synthesized by a two-step method are presented. Their structure, surface composition, and magn...
In the current study, a magnetic inorganic–organic nanohybrid material (HPA/TPI-Fe3O4) was produced and used as an efficient, highly recyclable and eco-friendly catalyst for the one-pot and multicomponent synthesis of 3,4-dihydroquinoxalin-2-amine, diazepine-tetrazole and benzodiazepine-2-carboxamide derivatives with high yields and in a short range of time (20–35 min)...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید