نتایج جستجو برای: چندجملهییهای چبیشف

تعداد نتایج: 226  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی 1391

مسایل استورم-لیوویل ‎‎از لحاظ نظری و کاربردی نقش بسیار مهمی‎‎ را در معادلات دیفرانسیل ایفا می کنند. بسیاری از پدیده های فیزیکی در مکانیک کلاسیک و کوانتوم توسط مسایل استورم-لیوویل مرتبه ی دوم توصیف می شوند. پدیده های دیگری نظیر تحلیل ارتعاشات آزاد‏ و مسایل موجود در علوم هیدرودینامیک یا هیدرومغناطیس به وسیله ی مسایل استورم-لیوویل مراتب بالا فرمول بندی می شوند.‎ ارائه‏، تعمیم و پیاده سازی روش های...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی 1390

این پایان نامه در مورد حل مسئله بهینه تزریق مداری با استفاده از ایجاد بسط توابع متعامد است. مبنای کار بر اساس تقریب برای کنترل و وضعیتها، با استفاده از بسط سری های چبیشف استوار است. مسائل کنترل بهینه با شرایط سرحدی ثابت یا آزاد و نیز با اضافه شدن قیود با حل پیچیده و وقت گیر مواجه می شود اما در این روش با صرف وقت کمتر و دقت بالا و تعداد جملات کمتر از سایر چند جمله ای های مشابه خود(چند جمله ای ها...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم پایه 1393

مسائل کنترل بهینه در شاخه های مختلف ریاضی همچون مهندسی هوا و فضا، طراحی رباط ها، مهندسی شیمی و ... رخ می دهند. غالبا قیود مسائل کنترل بهینه روی متغیر های وضعیت یا کنترل و یا هر دو هستند. حل مسائل کنترل بهینه? مقید خیلی مشکل است، به ویژه در اکثر موارد جواب های تحلیلی این گونه مسائل قابل محاسبه نیست، بنابراین روش های عددی برای حل بسیاری از این مسئله ها به کار برده می شود. روش های عددی بسیاری برا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده علوم پایه 1393

در این پایان نامه رده ای از مسائل کنترل بهینه که قیود حاکم بر آن معادلات دیفرانسیل معمولی و تابعی می باشند مورد بررسی و حل قرار گرفته است. ابتدا برای تبیین بیشتر مسئله، برخی تعاریف، مفاهیم و قضایای مورد نیاز بیان شده است. سپس مسأله ی کنترل بهینه با قیود معادلات دیفرانسیل معمولی را مورد بررسی قرار میدهیم و با استفاده از چندجمله ای های برنولی و چبیشف آنرا حل می نماییم. در ادامه مسائل بهینه سازی ب...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم پایه 1388

چکیده ندارد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی صنعتی کرمان - پژوهشکده ریاضیات 1392

معادلات انتگرال در زمینه های گسترده ای از علوم و مهندسی ظاهر می شوند. معادلات انتگرال انواع مختلفی دارد، در این پایان نامه معادلات انتگرال یک بعدی و دو بعدی مورد بررسی قرار می گیرند. در فصل اول به معرفی معادلات انتگرال و بعضی از مفاهیم مقدماتی می پردازیم. فصل دوم را با معرفی موجک ها آغاز می کنیم. سپس با استفاده از پایه های موجکی معادلات انتگرال فردهلم را حل خواهیم کرد. سرانجام در فصل آخر توابع...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده علوم ریاضی 1388

در این پایان نامه دو روش عددی برای حل دسته ی مهمی از مسایل کنترل بهینه ی غیر خطی ارایه می کنیم. روش اول که یک روش جدید است بر مبنای تقریب توابع ترکیبی، بنا نهاده شده است. در این روش ویژگی های تابع ترکیبی که شامل توابع پلاک پالس و چند جمله ای های چبیشف هستد ارایه شده است و با استفاده از ماتریس های عملیاتی انتگرال و حاصل ضرب آن ها مساله ی کنترل بهینه ی غیر خطی مورد بررسی به یافتن جوابی برای یک دس...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی 1392

در این پایان نامه به دنبال حل یک مسئله کنترل با قید معادلات دیفرانسیل با مشتقات جزئی مرتبه دوم و تعداد دلخواه از مشتقات کسری می باشیم. این مسئله شامل یک منبع انرژی مجهول می باشد که ابتدا باید تابع کنترل را برحسب آن بدست آورد و سپس انرژی بهینه را با یکی از روش های بهینه سازی محاسبه می کنیم. برای گسسته سازی قید مسئله از روش عنصر مرزی و روش ماتریس های عملیاتی چبیشف استفاده کرده ایم. در این روش جدی...

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده علوم ریاضی و مهندسی کامپیوتر 1390

برای حل معادلات انتگرال پریشنده منفرد و معادلات انتگرال-دیفرانسیل ولترا مرتبه اول و معادلات انتگرال-دیفرانسیل تأخیری ولترا، از روش بسط متناهی لژاندر و برای حل معادلات انتگرال ولترا با هسته های لگاریتمی از بسط متناهی چبیشف استفاده می کنیم و به تحلیل خطا و بعد از آن به بررسی مقایسه بین نتایج به دست آمده با دیگر روش ها می پردازیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز 1389

در این پایان نامه به مطاله روش رانگ-کوتای مرتبه چهار از نوع تفاضلات پسرو نیوتن بر اساس تقریب های چبیشف برای حل مسایل مقدار اولیه سخت می پردازیم.همچنین نشان می دهیم که روش را می توان به شکل روش رانگ-کوتای مرتبه چهار فرمول بندی کرد.مزیت روش بی کران بودن ناحیه پایداری است.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید