نتایج جستجو برای: نگاشت انقباضی ضعیف
تعداد نتایج: 15798 فیلتر نتایج به سال:
درسال های اخیر توجه خاصی به مطالعه این موضوع که یک زیر مجموعه محدب بسته k از یک فضای باناختحت چه شرایطی دارای خاصیت نقطه ثابت است، شده است. یعنی این که وقتی t یک نگاشت غیر انبساطی از k به داخل k باشد، در این صورت k شامل یک نقطه ثابت برای t باشد. در این پایان نامه ویژگی های نقطه ثابت نیم گروه هایی از نگاشت های غیرانبساطی روی زیر مجموعه های محدب فشرده ضعیف از یک فضای باناخ (یا به طور کلی تر یک فض...
در فصل اول این پایان نامه به معرفی مخروط ها در فضاهای نرمدار پرداخته و مخروط های منظم و نرمال و رابطه بین آنها را بررسی میکنیم. سپس فضاهای متریک مخروطی و توپولوژی روی این فضاها را مورد مطالعه قرار میدهیم. در فصل دوم قضایای نقطه ثابت را برای نگاشت های انقباضی و نیز روی فضای متریک مخروطی مرتب و همچنین برای نگاشت های نانزولی بیان می نماییم و بالاخره در فصل سوم به بررسی قضایای نقطه ی ثابت برای نگاش...
چکیده در این پایان نامه تلاش بر توسعه مفهوم مقدار معمولی برای نگاشت هموار f : o ? p بین فضاهای مداری o و p است. نشان می دهیم که قضیه سارد صادق است و تصویر معکوس یک مقدار معمولی یک زیر فضای مداری هموار کامل از o است. همچنین وجود نگاشت فضای مداری هموار با توجه به گروه های ایزوتروپی موضعی را مطالعه می کنیم. به عنوان یک کاربرد، قضیه غیر انقباضی برسوک برای فضاهای مداری فشرده لبه دار، اثبات خواه...
در این رساله ابتدا به بررسی نتایج و قضایای نقطه ثابت وانطباقی برای نگاشت های انقباضی در فضاهای k-متریک می پردازیم. همچنین نتایج تعمیم یافته وتوسعه یافته ای را ارائه می دهیم که اخیراً توسط چودهاری و متیا بدست آمده است. در ادامه قضایایی را مطرح می کنیم که کاربردهای فراوانی در کامپیوتر و ریاضی دارند. در آخر، به اثبات چند قضیه برای نگاشت های –g غیرنزولی در فضای k-متریک با توجه به وجود یا عدم وجود ش...
در این پایان نامه ابتدا مفهوم نگاشت های انقباض میر-کیلر(meir-keeler) را معرفی نموده و قضیه وجود و یکتایی نقطه ی بهترین تقریب را برای چنین نگاشت هایی اثبات می کنیم. سپس گسترشی از رده ی نگاشت های انقباض دوری را معرفی نموده و قضیه ی وجود و یکتایی نقاط بهترین تقریب برای چنین نگاشت هایی را اثبات می کنیم. سپس، نگاشت های انقباضی پروکسیمال از نوع اول و دوم را تعریف کرده و به بررسی وجود نقاط بهترین تق...
فرض کنیدaوb دو زیر مجموعه ناتهی فضای متریک (x,d) باشند. می دانیم که معادله تابعی tx=x که در آن t یک ناخود نگاشت داده شده است، لزوماً جواب ندارد. پس در این حالت سعی می کنیم که یک جواب تقریبی x را بیابیم به طوری که(d(x,tx مینیمم باشد. قضایای بهترین نقطه ی نزدینی شرایط کافی را برای وجود یک جواب تقریبی فراهم می نمایند که آن را بهترین نقطه ی نزدینی ناخود نگاشت t می نامند؛ این جواب در شرط dist(a,b)=...
در این پایان نامه دو قضیه نقطه ثابت را روی نگاشت های تعریف شده در فضاهای gpـ متریک gpـکامل اراپه می دهیم که در خاصیت انقباضی تعمیم یافته توسط توابع نیم پیوسته بالایی معین صدق می کنند.بعلاوه برخی از کاربردهای قضایا را با مثال نشان می دهیم.
در این پایان نامه در صدد معرفی مفاهیمی مثل نقاط ثابت زوج، نقاط انطباقی، تعویض پذیری توابع، یکنوایی مرکب و قضایای وجود و یکتایی نقاط ثابت نگاشت های انقباضی در فضاهای متریک کامل مرتب جزئی هستیم که تعمیم قضایای بهاسکار و لاکاشمیکاندام می باشد.
نظریه مدل گروه های آبلی تقسیم پذیر مرکز گرای انقباضی مدل کامل و دارای خاصیت حذف سور است. بطور کلی نظریه t را ت-کمین گوییم اگر مجموعه های تعریف پذیر در هر مدل آن بصورت اجتماع متناهی از زیرمجموعه های محدب باشند.
در این پایان نامه نوع خاصی از انقباض ها موسوم به نوع انتگرالی را مورد مطالعه قرار داده ایم . در واقع اینگونه انقباض تعمیمی از انقباض اصلی باناخ می باشد. پس از ارائه انقباض انتگرالی، نگاشت هایی با فاصله های متغیر را معرفی می کنیم و به بیان رابطه بین نقطه ثابت مشترک این نگاشت ها در شرایط انقباضی انتگرالی می پردازیم. همچنین این انقباض را در فضاهای g- متریک و شبه متریک مورد بررسی قرار می-دهیم و در ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید