نتایج جستجو برای: میانگین پذیری ضعیف تقریبی

تعداد نتایج: 125866  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان 1381

تلاشهای جدید توسط مولف های گوناگون ، بررسی مفهوم میانگین پذیری و میانگین پذیری ضعیف جبرهای باناخ تعریف شده روی گروههای موضعا فشرده است. یکی از ابزارهای اصلی در این زمینه این است که هر تصویر همومورفیسم پیوسته از یک جبر میانگین پذیر ، میانگین پذیر است. در این پایان نامه این موضوع در خصوص میانگین پذیری ضعیف مورد بررسی قرار می گیرد. این خاصیت برای میانگین پذیری ضعیف در حالت کلی درست نیست، اما می تو...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان 1387

چکیده ندارد.

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده ریاضی و کامپیوتر 1393

‏‎ابتدا به معرفی دو رده مهم از جبرهای باناخ می پردازیم که در فصول بعدی به عنوان منبعی از مثال های نقض از این جبرها استفاده می کنیم. ‎ سپس‏، برای ‎$phiin ‎delta‎(a)$‎ به معرفی مفهوم ‎‎$‎‎phi$‎‎‏-میانگین پذیری ‎‎$‎‎delta‎‎$‎‎‏-ضعیف برای جبر ‎$a‎$‎‎‏ به عنوان تعمیمی از ‎‎$‎‎phi$‎‎‏-میانگین پذیری در حالتی که جبر باناخ ‎‎$‎a‎$‎‏ دارای همانی تقریبی یک طرفه باشد‏، می پردازیم. می گوئیم ‎‎$‎a‎$‎‎‏‏، ‎...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس 1388

در این پایان نامه، ابتدا جبرهای باناخ نیم ساده منظم تعویض پذیری به نام جبرهای ابرتوبرین معرفی می شوند و سپس نشان داده می شود این جبرها یک زیرخانواده از جبرهای باناخ میانگین پذیر ضعیف توبرین هستند. سپس برخی از خواص موروثی چنین جبرهایی در رابطه با ایده آل ها، حاصلضرب های تانسوری و همریختی های جبری آن ها بررسی می شوند. به علاوه، نشان داده می شود برای جبر ابرتوبرین a فضای خطی اشتقاق های کراندار از ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1393

a و b را u ? مدولهای باناخ و m را یک a ? u ? مدول باناخ چپ و یک b ? u ? مدول باناخ راست در نظر بگیرید. در این پایان نامه، میانگینپذیری مدولی، n ?میانگینپذیری مدولی ضعیف و آرنز منظمی } =: t ? مدول ) ??? ? ? ??? = t ( به عنوان یک {u ? ? | ??? a m b ??? مدولی از جبر باناخ مثلثی را بررسی میکنیم. این نتایج را به کار میبریم که ثابت کنیم برای نیمگروه معکوس s با زیرنیمگروه e ? t 0 = ???...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز 1388

این پایان نامه شامل سه فصل است. در فصل اول تعاریف و مفاهیم مورد نیاز و همچنین قضایایی در مورد دوگان دوم جبرهای باناخ بیان شده پایان این فصل ما را به تعریف (l1(g رهمنون می سازد. در فصل دوم اعمال مختلف روی یک جبر باناخ، همچون ضرب مدولی، ضرب آرنز و ضرب تانسوری را بررسی خواهیم کرد.همچنین در این فصل ثابت می کنیم که a** با هر یک از ضربهای آرنز جبر باناخ است. مفاهیم و قضایای این فصل از اهمیت زیاد...

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده ریاضی و کامپیوتر 1391

مفهوم میانگین پذیری ضعیف برای جبرهای باناخ تعویضپذیر را، ابتدا باده، کرتیس و دلز در سال ???? معرفی کردند. سپس جانسون در سال ???? این مفهوم را برای جبرهای باناخ تعویض ناپذیر ارائه کرد. دلز، قهرمانی و گرونبک در سال ???? بررسی n-میانگین پذیری ضعیف جبرهای باناخ را آغاز کردند و تعداد زیادی از خاصیت های مهم این نوع از جبرهای باناخ را بدست آوردند. یک مسأله جالب مربوط به این نوع جبرها، این است که به ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1390

در این پایان نامه مدولهای باناخ تصویری و تزریقی را به طور تقریبی سرشت نمایی می کنیم. پیرکفسکی مفهوم تصویری و تزریقی را در جبرهای باناخ گسترش داد و حالت تقریبی و نیز تقریبی یکنواخت آنها را سرشت نمایی کرد و فراتر از آن ارتباط آنها را با میانگین پذیری و میانگین پذیری تقریبی و تقریبی یکنواخت روی جبرهای باناخ بررسی کرد. او همچنین نشان داد که هر جبر میانگین پذیر تقریبی یکنواخت، میانگین پذیر است. مفهو...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده علوم ریاضی 1392

با مطالعه و تحقیق در منابع شامل مقالات و کتب مرجع در این پایان نامه تلاش خواهد شد تا نتیجه مشهور ابرپایداری baker را برای توابع نمایی با مقادیر مختلط که روی یک جبر باناخ نیم ساده مختلط تعویض پذیر (دلخواه) تعریف شده است، تعمیم دهیم. ger نشان داده است که اگر مساله ی پایداری برای توابع نمایی مختلط مقدار به طور معمول بررسی شود، آنگاه مساله ی ابرپایداری برقرار نمی شود. در واقع ger نشان داده است که...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی 1388

هدف از انجام این رساله مطالعه میانگین پذیری ضعیف گسترش مدولی یک جبرباناخ است. سپس برای دو عدد متفاوت n و m رابطه بین n-میانگین پذیری ضعیف و m-میانگین پذیری ضعیف را مورد بررسی قرار می دهیم. هم چنین بررسی می کنیم در چه صورت یک همریختی حافظ میانگین پذیری و n-میانگین پذیری ضعیف است.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید