نتایج جستجو برای: فضای هاسدورف

تعداد نتایج: 26125  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1388

قضیه ی معروف استون – باناخ بیان می کند که طولپایی های پوشا از (c0(x به (c0(y عملگرهای ترکیبی وزندار هستند، که در آن x و y دو فضای موضعاً فشرده و هاسدورف می باشند. در این پایان نامه به بررسی ساختارعملگرهای ترکیبی وزندار از (c0(x به (c0(y می پردازیم و ثابت می کنیم هر طولپایی غیرپوشا و نگاشت های خطی جداکننده اساساً عملگرهای ترکیبی وزندار می باشند. همچنین خواص کلی نگاشت های خطی جداکننده-ی t از (c00(x...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس 1390

در این پایان نامه که مراجع اصلی آن [20، 21 و 7] می باشد، ابتدا برای فضای هاسدورف و فشرده ی x نرم اساس و ثابت پایداری هایرز-اولام عملگر ترکیبی وزندار uc?:f?u.(fo?) بر c(x) را بر حسب مجموعه ی ?({x?x:|u(x)?r}), r>0 تعیین کرده و سپس نتایج برای عملگر ترکیبی وزندار uc? روی جبرهای یکنواخت تعمیم داده می شود. همچنین فشردگی عملگرهای ترکیبی وزندار بر جبرهای یکنواخت تحت شرایط خاص بررسی می شوند. در ادامه شر...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1389

فرض کنیم a و b دو جبر مختلط و t از a به b یک نگاشت خطی باشد. t را جداکننده مینامیم اگر برای هر x و y در a و b ِ حاصلضرب xy=0 نتیجه دهد txty=0 . در این پایرض کنیم a و b دو جبر مختلط ان نامه راجع به فضای توابع پیوسته ی برداری مقدار روی فضاهای موضعا فشرده x و y بحث میکنیم و بعد از ارایه ی بعضی خواص این فضاها نگاشت هایی را در نظر می گیریم که رابطه ی جداکنندگی بین این فضاها را بررسی می کند.نشان میدهی...

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده ریاضی و کامپیوتر 1391

قضیه ی کلاسیک باناخ-استون صورت کلی طولپاهای خطی پوشا بین فضاهای توابع پیوسته بر یک فضای فشرده و هاسدورف را مشخص می کند. هدف ما بیان صورت لیپ شیتس قضیه های جریسن و کمبرن بین این فضاها در حالت برداری است. در این پایان نامه شرح کاملی از طولپاهای خطی بین فضاهای توابع لیپ شیتس برداری مقدار را بیان و ثابت می کنیم. نشان می دهیم هر طولپای خطی بین این فضاها را می توان برحسب یک نگاشت لیپ شیتس و نگاشت لیپ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی 1390

فرض کنیم یک فضای توپولوژی نقطه دار باشد. گروه بنیادین توپولوژیکی آن را با نماد نشان می دهیم. در این پایان نامه ابتدا خواص مقدماتی گروه های بنیادین توپولوژیکی بررسی می شود. از جمله نشان داده می شود که ‎ ‎تابعگونی از رسته فضا های توپولوژی نقطه دار به رسته شبه گروه های توپولوژیکی است. ‎برای مطالعه خواص بیشتر گروه های بنیادین توپولوژیکی ثابت می شود که هر گروه بنیادین توپولوژیکی مانند به صورت یک گر...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده ریاضی 1392

در این رساله ابتدا برای فضاهای فشرده و هاوسدورف x وy به بررس طولپای خطی-حقیقی مانندt از زیر فضایa از c(x) بهc(y می پردازیم و در حالتی کهa یک جبریکنواخت روی x است، توصیفی برایt ارائه می دهیم. سپس نتایج بهتری را برای زمانی که t(a)دارای خواص بیشتری باشد ارائه می کنیم، بعلاوه نتایجی مشابه را برای حالتی که t یک طولپا از فضای تابعیa به روی زیر فضاهای حقیقی ازc(y) باشد که در شرط جداسازی خاصی صدق می کن...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1394

با بررسی قضیه های کلاسیک باناخ-استون، گلفاند-کلموگروف و کاپلانسکی در می یابیم، یک فضای هاسدورف فشرده x منحصراً به وسیله ساختار طولپای خطی، ساختار جبری و ساختار شبکه ای به ترتیب از فضای c(x) تعیین می شوند. در این پایان نامه نشان داده شده است، برای زیر فضاهای نسبتاً عمومی a(x) و a(y) به ترتیب از c(x) و c(y) هر دوسویی خطی t ازa(x) به a(y) به یک همسان ریختی h از x به y منجر می شود که در آن t یک عملگر...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز 1386

چکیده ندارد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم 1392

گروه های فوخسی در شاخه های مختلط هندسه و آنالیز مطرح شده و مورد بررسی قرار می گیرند. یکی از مهمترین کاربردهای گروه های فوخسی در رده بندی رویه های ریمان هذلولوی است که در آنالیز مختلط چندمقداری مبحثی بسیار مهم بوده و در رشته های فنی مهندسی نیز کاربرد زیادی دارد. هر زیرگروه psl(2,r) که به طور ناپیوسته ویژه روی h صفحه هذلولوی عمل کند را یک گروه فوخسی گویند و برای هر گروه فوخسی بی تاب مانند ? فضای...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان 1398

این پایان نامه دارای چهار فصل بوده فصل اول مطالبی از توپولوژی فصل دوم مطالبی از گروههای پیراتوپولوژیکی فصل سوم اشنایی با گروههای پیراتوپولوژیکی امگا-متعادل و کلا کراندارو در نهایت در فصل چهارم شرایط لازم و کافی در مورد نشاندن گروههای پیراتوپولوژیکی.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید