نتایج جستجو برای: فضاهای هیلبرت
تعداد نتایج: 9554 فیلتر نتایج به سال:
«منطق به صورت نامحدود ... صوری نیست. اگر چنین بود، بدون محتوا می بود ... هیچ علمی کاملاً صوری نیست» (frege, 1971:109). در ۱۸۹۹، دیوید هیلبرت نظام اصلِ موضوعیِ منقحی برای هندسه اقلیدسی عرضه کرد و با اثبات مشروط فراقضیه های سازگاری و استقلال برای این نظام، راه حلی برای یکی از مسائل دیرپای ریاضیات (مشهور به مسئله خطوط موازی) ارائه داد. گوتلوب فرگه، پایه گذار منطق صوری جدید، مخالفت های بنیادینی با روی...
دوگان های قاب ها نقش اساسی در بازسازی بردارها (یاسیگنالها) بر حسب اعضای قاب دارند. ما در این رساله یک شرط لازم وکافی برای دوگان بودن قاب های گابور و پیدا می کنیم. همچنین دوگان های عملگری یک قاب در فضاهای هیلبرت جدایی پذیر معرفی و مشخص می شوند. با به کار بردن قاب های دوگان عملگری (که شامل قاب های دوگان معمولی نیز می باشند) فرمولهای باز سازی بیشتری برای سیگنال ها بدست می آید. در ادامه نشان داده م...
فرض کنیم x یک فضای باناخ حقیقی باشد . ثابت می کنیم که اگر یک عملگر مثبت ، متقارن ، یک به یک و اکیداً نامنفرد از x به توی دوگانش وجود داشته باشد آنگاه یا x با یک فضای هیلبرت یکریخت می باشد یا شامل یک زیر فضای متمم شده غیر بدیهی است که با یک فضای هیلبرت یکریخت می باشد . همچنین ما به مورد غیر متقارن نیز خواهیم پرداخت .
فضاهای برداری به عنوان یک مجموعه جبری ساده ترین معدلات تعریف کننده را دارند اما معادلات تعریف کننده ی دو یا تعداد متناهی زیر فضای برداری بستگی به نحوه ی قرار گرفتن این زیر فضاها در فضای برداری احاطه کننده ی آنها دارد.خواص هندسی این نوع مجموعه های جبری نه تنها به خودی خود شایسته ی مطالعه و تحقیق اند بلکه به دلیل ارتباط نزدیک خواص آنها با حل برخی مسائل مربوط به واریته های قاطع و یا واریته های قاط...
انتشار بستهموج، یکی از شکلهای مهم انتقال انرژی در جوّ است. همة امواج شناختهشده جوّی را میتوان بهصورت بستهموج شناسایی و دنبال کرد. متداولترین روش برای شناسایی بستهموجها تعیین پوش آنها است. در این مقاله با استفاده از دادههای سامانه پیشبینی جهانی موسوم به GFS برای سه ماه دسامبر 2004 تا فوریه 2005، دو بستهموج در نظر گرفته شده و پوش آنها با هریک از روشهای ومدولهسازی مختلط، تبدیل هیلب...
از مطالب مهمی که در مبحث بردهای عددی عنوان می شود، محدب بودن آن هاست. در این پایان نامه، هدف بررسی محدب بودن چند نوع از بردهای عددی است. این پایان نامه شامل مطالبی برای آشنایی با انواع بردهای عددی و خواص آن ها می باشد. مهم ترین بخش این نوشته به برهانی برای محدب بودن برد عددی رتبه بالای عملگرهای خطی کران دار روی فضاهای هیلبرت اختصاص دارد. برهان هایی که در این زمینه آورده شده است، عموماً برای فه...
در این پایان نامه پس از بیان تعاریف فضاهای هیلبرت با هسته ی بازمولد(rkhs) و قضایای مقدماتی نشان می دهیم فضای هاردی روی دیسک واحد و فضای سوبولف w^{1,2}[a,b] از این نوع فضاها هستند. در ادامه تابع هسته، قاب پارسوال و ارتباط آن ها با rkhs را بررسی می کنیم. نظریه ی تقریب ابزاری مهم برای محققان به منظور مدل سازی و پردازش داده ها ی حاصل از اندازه گیری های تجربی و آزمایش ها است. روش هم مکانی را ب...
پس از آن که کانتور نظریه مجموعه ها را معرفی کرد، روش های جدید و غیرمتعارفی در ریاضیات به وجود آمد که واکنش هایی را نسبت به آن برانگیخت. امروزه تقریبا در تمام کتب ریاضی، این روشها به صورت فراگیر مشاهده می شوند و در واقع مشکل بتوان توضیح داد که چرا این مطالب روزی جنجال برانگیز بوده است. هیلبرت از روش های نظریه مجموعه ها به شدت طرفداری می کرد ولی بروز پارادوکس هایی مانند پارادوکس راسل، موجب تشویش ...
یک *c -مدول هیلبرت روی یک *c-جبر a یک مدول چپ m همراه با یک ضرب داخلی روی a است که در مولفه ی اول خطی ودر مولفه دوم مزدوج خطی است به طوری که m با نرم تعریف شده از ضرب داخلی یک فضای باناخ است.مساله حافظ رتبه یک مساله اساسی در مطالعه مسائل حافظ خطی است. *c-مدول های هیلبرت ابتدا توسط کاپلانسکی در سال 1953 به منظور اثبات درونی بودن اشتقاق های روی *aw-جبرها به کار گرفته شد.او ضرب داخلی فضاهای هیلبرت...
در این رساله ابتدا نگاشت های چندمقداری غیرانبساطی تعمیم یافته را معرفی می کنیم. سپس به بررسی وجود نقاط ثابت برای این نگاشت ها در فضاهای متریک ژئودزیک و هم چنین در فضاهای باناخ اکیداً محدب می پردازیم. در ادامه به بیان قضیه های همگرایی برای تعداد متناهی از نگاشت های چندمقداری غیرانبساطی تعمیم یافته در فضاهای cat(0) مبادرت می ورزیم. سرانجام چندین روش تکرار برای حل مسائل تعادل و یافتن نقاط ثابت مش...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید