نتایج جستجو برای: روش lasso
تعداد نتایج: 374083 فیلتر نتایج به سال:
Lasso is a widely used regression technique to find sparse representations. When the dimension of the feature space and the number of samples are extremely large, solving the Lasso problem remains challenging. To improve the efficiency of solving large-scale Lasso problems, El Ghaoui and his colleagues have proposed the SAFE rules which are able to quickly identify the inactive predictors, i.e....
We consider the least-square linear regression problem with regularization by the l 1-norm, a problem usually referred to as the Lasso. In this paper, we first present a detailed asymptotic analysis of model consistency of the Lasso in low-dimensional settings. For various decays of the regularization parameter, we compute asymptotic equivalents of the probability of correct model selection. Fo...
We present a short tutorial and introduction to using the R package genlasso, which is used for computing the solution path of the generalized lasso problem discussed in Tibshirani and Taylor (2011). Use cases of the generalized lasso include the fused lasso over an arbitrary graph, and trend fitting of any given polynomial order. Our implementation includes a function to solve the generalized ...
Abstract: We consider the least angle regression and forward stagewise algorithms for solving penalized least squares regression problems. In Efron, Hastie, Johnstone & Tibshirani (2004) it is proved that the least angle regression algorithm, with a small modification, solves the lasso regression problem. Here we give an analogous result for incremental forward stagewise regression, showing tha...
We develop a unified robust linear regression model and show that it is equivalent to a general regularization framework to encourage sparse-like structure that contains group Lasso and fused Lasso as specific examples. This provides a robustness interpretation of these widely applied Lasso-like algorithms, and allows us to construct novel generalizations of Lasso-like algorithms by considering...
BACKGROUND Because multiple loci control complex diseases, there is great interest in testing markers simultaneously instead of one by one. In this paper, we applied two model selection algorithms: the stochastic search variable selection (SSVS) and the least absolute shrinkage and selection operator (LASSO) to two quantitative phenotypes related to rheumatoid arthritis (RA). RESULTS The Gene...
Variable selection is a topic of great importance in high-dimensional statistical modeling and has a wide range of real-world applications. Many variable selection techniques have been proposed in the context of linear regression, and the Lasso model is probably one of the most popular penalized regression techniques. In this paper, we propose a new, fully hierarchical, Bayesian version of the ...
While considerable advances have been made in estimating high-dimensional structured models from independent data using Lasso-type models, limited progress has been made for settings when the samples are dependent. We consider estimating structured VAR (vector auto-regressive model), where the structure can be captured by any suitable norm, e.g., Lasso, group Lasso, order weighted Lasso, etc. I...
In this project, we discuss high-dimensional regression, where the dimension of the multivariate distribution is larger than the sample size, i.e. d n. With the assumption of sparse structure of the underlying multivariate distribution, we take the advantage of the `1 regularized method for parameter estimation. There are two major problems that will be discussed in this project: (1) a family o...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید