نتایج جستجو برای: روش معادلات دیفرانسیل
تعداد نتایج: 376723 فیلتر نتایج به سال:
به عنوان تعمیم بسطهای برشی تیلور غیر تصادفی، بسطهای برشی مرتبه دوم در حالت اسکالر و چند بعدی بر حسب توانهای نمو متغیرها برای یک تابع به اندازه کافی هموار از جواب یک معادله دیفرانسیل تصادفی آورده شده است. روند کلی ساخت روشهای ضعیف برای حل معادلات دیفرانسیل تصادفی با نویز ضربی نشان داده شده است. همانند حالت غیر تصادفی، این روند عبارت است از مقایسه بسط تصادفی تقریب با روش تیلور متناظر. به این طریق...
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
در این پایان نامه, یک روش تحلیلی عددی برای حل معادله دیفرانسیل جزئی خطی و غیرخطی از مرتبه کسری بفرم $ _{t_{0}}^{c} d_{t}^{alpha}u(x,t)=f(x,t,u(x,t)) $ با شرط اولیه $ u(x,0)=f(x) $ را بررسی می کنیم که در آن _{t_{0}}^{c}d_{t}^{alpha} مشتق از مرتبه کسری از نوع مشتق کاپوتو و $ 0<alphaleq 1 $ می باشد. در این کار, روش تبدیل دیفرانسیل تعمیم یافته (gdtm) ر...
در این مقاله با استفاده از تئوری غیر خطی ون-کارمن، معادلات دیفرانسیل حاکم بر رفتار ورقهای نازک در تغییر شکلهای بزرگ مرور شده و سپس فرمول بندی روش عددی گالرکین در دستگاه مختصات مساحتی برای حل این معادلات دیفرانسیل ارائه شده است. به کمک دستگاه مختصات مساحتی متغیرهای موجود در سیستم معادلات انتگرالی روی دامنه درون یابی شده و آنگاه دستگاه معادلات غیرخطی حاصله برحسب مختصات تعمیم یافته به روش نیوتن را...
در این مقاله با استفاده از تئوری غیر خطی ون-کارمن، معادلات دیفرانسیل حاکم بر رفتار ورقهای نازک در تغییر شکلهای بزرگ مرور شده و سپس فرمول بندی روش عددی گالرکین در دستگاه مختصات مساحتی برای حل این معادلات دیفرانسیل ارائه شده است. به کمک دستگاه مختصات مساحتی متغیرهای موجود در سیستم معادلات انتگرالی روی دامنه درون یابی شده و آنگاه دستگاه معادلات غیرخطی حاصله برحسب مختصات تعمیم یافته به روش نیوتن را...
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
در این پایان نامه که بر اساس مقالات [5] و [19] نوشته شده است، حل عددی معادلات انتگرال فردهلم خطی و غیرخطی و معادلات انتگرو- دیفرانسیل فردهلم خطی را به کمک تقریب توابع، با استفاده از موجکهای سینوس- کسینوس بیان می کنیم. ابتدا در دو فصل جداگانه موجکهای سینوس- کسینوس را که با توجه به تعریف موجک مادر به دو شکل موجکهای سینوس- کسینوس cas و موجکهای سینوس- کسینوس scw می باشند، ارائه می کنیم. سپس با توجه...
دراین پایان نامه روش هم محلی سینک برای حل معادلات انتگرال فردهلم-ولترا و معادلات انتگرال-دیفرانسیل فردهلم-ولترا خطی و غیرخطی به کار گرفته شده است. در این روش ابتدا پاسخ معادله را به صورت بسطی از توابع پایه ای سینک در نظر گرفته، سپس با استفاده از خواص توابع سینک و جایگذاری نقاط گره ای سینک، معادله مورد نظر به یک دستگاه معادله جبری خطی یا غیرخطی تبدیل می شود که با استفاده از برنامه کامپیوتری ضر...
در این مقاله، به روش تحلیل محتوا و با استفاده از چارچوب نظری برنامۀ درسی واقعیت مدار در حوزۀ آموزش معادلات دیفرانسیل، همۀ مثالهای فصل های اول و دوم کتاب معادلات دیفرانسیل بویس-دیپریما مورد بررسی قرار می گیرد. نتایج حاصل از این یافته ها حاکی از نقش پررنگ برنامۀ درسی واقعیت مدار در این کتاب است.
در این پایان نامه هدف یافتن جواب تقریبی رده ای از معادلات انتگرالی خطی با روش عناصر متناهی می باشد. برای این منظور از چندجمله ای های لاگرانژ به عنوان توابع پایه ای استفاده می کنیم. در ابتدا مقدمات روش را توضیح خواهیم داد، و سپس شکل کلی هر یک از انواع معادلات انتگرالی نوع دوم را در نظر می گیریم و شرایط وجود و یکتایی جواب را در مورد هر یک از آن ها بررسی خواهیم کرد. سپس به پیاده سازی روش بر رو...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید