نتایج جستجو برای: روش انقباضی lasso

تعداد نتایج: 374444  

2010
Yang Zhou Rong Jin Steven C. H. Hoi

We propose a novel group regularization which we call exclusive lasso. Unlike the group lasso regularizer that assumes covarying variables in groups, the proposed exclusive lasso regularizer models the scenario when variables in the same group compete with each other. Analysis is presented to illustrate the properties of the proposed regularizer. We present a framework of kernel based multi-tas...

ژورنال: :مجله دانشگاه علوم پزشکی اراک 0
فرامرز فلاحی faramarz fallahi مهرداد روغنی mehrdad roghani مجید خلیلی زاده majid khalilizad

مقدمه: با توجه به وجود شواهدی مبنی بر اثر ضد دیابتی سیر وحشی، اثر مصرف خوراکی این گیاه بر پاسخ انقباضی آئورت سینه ای در موش دیابتی مورد بررسی قرار گرفت. روش کار: در این مطالعه تجربی- آزمایشگاهی 40 موش صحرایی نر به 5 گروه کنترل، کنترل تحت تیمار با سیر وحشی، دیابتی، دیابتی تحت درمان با گیاه و تحت تیمار با گلیبن کلامید تقسیم بندی شدند. برای دیابتی کردن موش ها از استرپتوزوتوسین به میزان 60 میلی گرم...

ژورنال: :journal of research in rehabilitation sciences 0
حامد اسماعیلی hamed esmaeili مهرداد عنبریان mehrdad anbarian بهروز حاجیلو behrouz hajiloo محمد علی سنجری mohammad ali sanjari حامد اسماعیلی مهرداد عنبریان بهروز حاجیلو

مقدمه: عوامل ساختاری قادر هستند روی عملکرد پای انسان اثرگذار باشند. هدف از این مطالعه، تعیین اثر آنی کفی طبی بر میزان فعالیت الکتریکی و هم انقباضی عضلات ساق افراد دچار صافی کف پا در مقایسه با گروه شاهد بود. مواد و روش ها: تعداد 30 نفر دانشجوی پسر در دو گروه دچار صافی کف پا و شاهد جای گرفته و در این مطالعه شرکت کردند. از الکترومایوگرافی سطحی برای اندازه گیری فعالیت عضلات درشت نئی قدامی، نازک نئی...

Journal: :CoRR 2013
Martin Jaggi

We investigate the relation of two fundamental tools in machine learning, that is the support vector machine (SVM) for classification, and the Lasso technique used in regression. We show that the resulting optimization problems are equivalent, in the following sense: Given any instance of an l2-loss softmargin (or hard-margin) SVM, we construct a Lasso instance having the same optimal solutions...

2013
Jie Wang Jiayu Zhou Peter Wonka Jieping Ye

Lasso is a widely used regression technique to find sparse representations. When the dimension of the feature space and the number of samples are extremely large, solving the Lasso problem remains challenging. To improve the efficiency of solving large-scale Lasso problems, El Ghaoui and his colleagues have proposed the SAFE rules which are able to quickly identify the inactive predictors, i.e....

Journal: :CoRR 2009
Francis R. Bach

We consider the least-square linear regression problem with regularization by the l 1-norm, a problem usually referred to as the Lasso. In this paper, we first present a detailed asymptotic analysis of model consistency of the Lasso in low-dimensional settings. For various decays of the regularization parameter, we compute asymptotic equivalents of the probability of correct model selection. Fo...

2012
Ryan J. Tibshirani Taylor B. Arnold

We present a short tutorial and introduction to using the R package genlasso, which is used for computing the solution path of the generalized lasso problem discussed in Tibshirani and Taylor (2011). Use cases of the generalized lasso include the fused lasso over an arbitrary graph, and trend fitting of any given polynomial order. Our implementation includes a function to solve the generalized ...

2006
Trevor Hastie Jonathan Taylor Robert Tibshirani Guenther Walther

Abstract: We consider the least angle regression and forward stagewise algorithms for solving penalized least squares regression problems. In Efron, Hastie, Johnstone & Tibshirani (2004) it is proved that the least angle regression algorithm, with a small modification, solves the lasso regression problem. Here we give an analogous result for incremental forward stagewise regression, showing tha...

2013
Wenzhuo Yang Huan Xu

We develop a unified robust linear regression model and show that it is equivalent to a general regularization framework to encourage sparse-like structure that contains group Lasso and fused Lasso as specific examples. This provides a robustness interpretation of these widely applied Lasso-like algorithms, and allows us to construct novel generalizations of Lasso-like algorithms by considering...

2009
Sudeep Srivastava Liang Chen

BACKGROUND Because multiple loci control complex diseases, there is great interest in testing markers simultaneously instead of one by one. In this paper, we applied two model selection algorithms: the stochastic search variable selection (SSVS) and the least absolute shrinkage and selection operator (LASSO) to two quantitative phenotypes related to rheumatoid arthritis (RA). RESULTS The Gene...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید