نتایج جستجو برای: دندانپزشکی bridge
تعداد نتایج: 56436 فیلتر نتایج به سال:
چکیده ندارد.
چکیده ندارد.
چکیده ندارد.
A path in an edge-colored graph G is rainbow if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the smallest integer k for which there exists a k-edge-coloring of G such that every pair of distinct vertices of G is connected by a rainbow path. Let f(d) denote the minimum number such that rc(G) ≤ f(d) for each bridgeless graph G with diameter d. In this...
Several authors have studied the graphs for which every edge is a chord of a cycle; among 2-connected graphs, one characterization is that the deletion of one vertex never creates a cut-edge. Two new results: among 3-connected graphs with minimum degree at least 4, every two adjacent edges are chords of a common cycle if and only if deleting two vertices never creates two adjacent cut-edges; am...
ایمپلنتهای دندانی نمونه خوبی از تکامل و پیشرفت تدریجی علم و هنر دندانپزشکی در جهت برآوردن نیازهای بیماران و ایجاد رضایت در افرادی است که به دلایل مختلف به این گونه اعمال دندانپزشکی نیاز دارند وجود دندانهای طبیعی برای ظاهر انسان تکلم و جویدن ضروری است . در این پایان نامه به این موضوع اختصاص یافته است .
This paper discusses the knowledge transfer process in offshore outsourcing. The focus is a case study of software offshore outsourcing from Japan to Vietnam. Initial results confirm that willingness to cooperate and good impressions facilitate the knowledge transfer process. In addition, communication barriers, cultural differences, lack of equivalence in individual competence, and lack of com...
A conjecture of Fan and Raspaud [3] asserts that every bridgeless cubic graph contains three perfect matchings with empty intersection. Kaiser and Raspaud [6] suggested a possible approach to this problem based on the concept of a balanced join in an embedded graph. We give here some new results concerning this conjecture and prove that a minimum counterexample must have at least 32 vertices.
The oriented diameter of a bridgeless graph G is min{diam(H) |H is an orientation of G}. A path in an edge-colored graph G, where adjacent edges may have the same color, is called rainbow if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the smallest integer k for which there exists a k-edge-coloring of G such that every two distinct vertices of G are...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید