نتایج جستجو برای: الگوهای garch
تعداد نتایج: 18045 فیلتر نتایج به سال:
Conditional quantile estimation is an essential ingredient in modern risk management. Although GARCH processes have proven highly successful in modeling financial data it is generally recognized that it would be useful to consider a broader class of processes capable of representing more flexibly both asymmetry and tail behavior of conditional returns distributions. In this paper, we study esti...
Various e m p i r i d studies have shown that the time-varying volatility of asset returns can be described by GARCH (generalized autoregressive conditional heteroskedasticity) models. The corresponding GARCH option pricing model of Duan (1995) is capable of depicting the "smile-effect" which often can be found in option prices. In some derivative markets, however, the slope of the smile is not...
This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This mixture density has the form of a kernel density estimator of the errors with its bandwidth being the ...
Economic and financial time series typically exhibit time varying conditional (given the past) standard deviations and correlations. The conditional standard deviation is also called the volatility. Higher volatilities increase the risk of assets, and higher conditional correlations cause an increased risk in portfolios. Therefore, models of time varying volatilities and correlations are essent...
This paper studies volatility forecasting in the financial stock market. In general, stock market volatility is time-varying and exhibits clustering properties. Thus, this paper presents the results of using a fuzzy system method to analyze clustering in generalized autoregressive conditional heteroskedasticity (GARCH) models. It also uses the adaptive method of recursive least-squares (RLS) to...
Comparing the performances of GARCH-type models in capturing the stock market volatility in Malaysia
We conduct empirical analyses to model the volatility of stock market in Malaysia. The GARCH type models (symmetric and asymmetric GARCH) are used to model the volatility of stock market in Malaysia. Their performances are compared based on three statistical error measures tools, i.e. mean squared error, root means squared error and mean absolute percentage error for in sample and out sample an...
This paper estimates the dynamic conditional correlations in the returns on Tapis oil spot and onemonth forward prices for the period 2 June 1992 to 16 January 2004, using recently developed multivariate conditional volatility models, namely the Constant Conditional Correlation Multivariate GARCH (CCCMGARCH) model of Bollerslev [1990], Vector Autoregressive Moving Average – GARCH (VARMAGARCH) m...
We consider a family of GARCH(1,1) processes introduced in He and Teräsvirta (1999a). This family contains various popular GARCH models as special cases. A necessary and sufficient condition for the existence of a strictly stationary solution is given.
This paper is mainly talking about several volatility models and its ability to predict and capture the distinctive characteristics of conditional variance about the empirical financial data. In my paper, I choose basic GARCH model and two important models of the GARCH family which are E-GARCH model and GJR-GARCH model to estimate. At the same time, in order to acquire the forecasting performan...
Previous studies of the information content of the implied volatilities from the prices of call options have used a cross-sectional regression approach. This paper compares the information content of the implied volatilities from call options on the S&P 100 index to GARCH (Generalized Autoregressive Conditional Heteroscedasticity) and Exponential GARCH models of conditional volatility. By addin...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید